
Instructor: Shuai Hao
shao@odu.edu

www.cs.odu.edu/~haos

Computer and Network Security
Fall 2025

CS 772/872: Advanced

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

Network Security – Cryptography

• TCP/IP

• (D)DoS Attacks

• DNS

• BGP

• CDN

• Applied Cryptography

• PKI

• TLS/SSL and HTTPS

• DNSSEC (USENIX Security’17)

• RPKI (NDSS’17)

• HTTPS/CDN (IEEE S&P’14)

• Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

Cryptography Foundations

• Confidentiality: only sender, intended receiver should “understand”
message contents

• sender encrypts message

• receiver decrypts message

• Integrity: sender, receiver want to ensure message not altered (in transit,
or afterwards)

• Authentication: sender, receiver want to confirm identity of each other

• Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

• Classical Cryptography

• Always assumed that two parties shared some secret information (Key)

• Private-kay or symmetric-key

• “Modern” Cryptography

• No pre-shared secret is requited for two parties

• Public-key or asymmetric-key

Cryptography Foundations

• (Symmetric Key) Encryption

• Encrypt (encode) plaintext into ciphertext

• Only legit-recipient can decrypt ciphertext to plaintext

Encrypt Decrypt
plaintext plaintextciphertext

key key

Cryptography Foundations

• (Symmetric Key) Encryption

• Encrypt (encode) plaintext into ciphertext

• Only legit-recipient can decrypt ciphertext to plaintext

• Stream Ciphers

• Block Ciphers

• DES (Data Encryption Standard)

• AES (Advanced Encryption Standard)

Cryptography Foundations

• Correctness

Encrypt E Decrypt D
Plaintext

 m

Correctness: m=Dk(Ek(m))

Ciphertext

c=Ek(m)

Key kKey k

Encrypt E
Plaintext

 m

Ciphertext

c=Ek(m)

Key k

Decrypt D
Plaintext

m=Dk(c)

Key k

Ciphertext

 c

Plaintext Dk(c)

Cryptography Foundations

• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Attacker was able to obtain some cipher text, encrypted using the
same key, corresponding to plaintext of the attacker's choice (an
oracle)

Cryptography Foundations

• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack

• Attacker is able to get a party to decrypt certain cipher texts of that
attacker's choice.

Cryptography Foundations

• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack

Cryptography Foundations

Regardless of any prior information the attacker has about the plaintext, the ciphertext
observed by the attacker should leak no additional information about the plaintext.

• Threat Model for Encryption

• Adversary’s Goal

• Recover the secret key

• Recover plaintext from ciphertext, without knowing key

• Learn partial information about plaintext from the ciphertext

Cryptography Foundations

• Authentication

• Encryption ensures Confidentiality

• What about Integrity and Authentication

• Does Alice send this message?

Encrypt Decrypt
plaintext plaintextciphertext

key key

Cryptography Foundations

Key k Key k

m, MACk(m)

Valid MAC → Only Bob and me

know k. So he (or me…) sent m.

• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• Use shared key k to authenticate messages

Cryptography Foundations

• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• (m, Tag) is valid iif Tag = MACk(m)

mm’

Key k Key k

MAC k (m)Tag ??

+ +

k = ??

MACk(m’) = ??

Cryptography Foundations

• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• Sender could be any key-holder including recipient

• Specify sender and recipient in the message

• Could be re-transmission (replay attack)

• Add time/sequence challenge

Cryptography Foundations

Key k Key k

m, MACk(m)

Key k

One of

Cat, Bob

(or me)

sent m.

• Hash Functions

• Hash function h(m) allow verification of message: Integrity

• Any length of message m → fixed length of hash h(m)

• Also confidentiality: one-way function

• Hash value h(m) does not expose m

• Collision-resistance

• h(m) ≠ h(m’)

• Pseudo-randomness

• Every hash has collisions: |input| >> |output|

• But hard to find collisions

Cryptography Foundations

• Hash Functions

• Hash function h(m) allow verification of message: Integrity

• Any length of message m → fixed length of hash h(m)

• Also confidentiality: one-way function

• Hash value h(m) does not expose m

• Practical hash functions

• MD5: 128-bit output; collisions found in 2004

• SHA-1: 160-bit; theoretical analysis indicates weakness

• SHA-2: 256/512-bit output

• SHA-3: different design than previous SHAs; results of a public competition

Cryptography Foundations

• Hash Functions

• Hash functions: maps arbitrary length inputs to a fixed length output

• Input: message m (binary strings)

• Output: (short) binary strings n (message digest)

• Keyed or unkeyed

Cryptography Foundations

𝑚

ℎ
ℎ(𝑚)

𝑚

ℎ
ℎ𝑘(𝑚)

k

Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• How do users share a key in the first place?

• Need to share the key using a secure channel

• Trusted carrier/face-to-face meeting

• Key Distribution Center

Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• Key management problem

• When each pair of users might need to communicate securely

• O(N2) keys overall

Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• Key management problem

• Lack of ”open systems”

• Two users who have no prior relationship want to communicate securely

Public Key Cryptography

• New direction: can encryption key be public?

• Anyone can encrypt the message using public encryption key

• Decryption key will be different (and private)

• only the key-holder can decrypt it

Each entity, Alice, generate a key pair (P, S).

• P is the public key and S is the secret private key

• Requirement: it must be infeasible for an adversary recovering S from P

• Example: S = (p, q) where p, q are randomly-selected large prime numbers,

and P = pq

Public Key Cryptography

• New direction: can encryption key be public?

• Anyone can encrypt the message using public encryption key

• Decryption key will be different (and private)

• only the key-holder can decrypt it

Encrypt E Decrypt D
Plaintext

 m
Plaintext

m=Dd(Ee(m))

Ciphertext

c=Ee(m)

Encryption Key e

(public)

KeyGen KG

(e,d)

e d

Decryption Key d

(private)

Public Key Cryptography

• Public Key Cryptosystem

• Encryption: Public key encrypts, private key decrypts

• Also Authentication: Digital Signature

• Sign with private key, validate with public key

Sign S Validate V
Message

 m
m if Vv(m, σ)=OK

Error otherwise

m, σ=Ss(m)

Private signing

key s

KeyGen KG

(s,v)

s v

Public validation

key v

Public Key Cryptography

• Public Key Cryptosystem

• Encryption: Public key encrypts, private key decrypts

• Also Authentication: Digital Signature

• Sign with private key, validate with public key

• Public key cryptosystem also has drawbacks: significantly expensive and slow

• Public key cryptosystem: exchange a shared, private key

• Private key encryption: establish a secure communication channel

Public Key Cryptography

• Key-Exchange Protocol

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

Public Key Cryptography

• Key-Exchange Protocol

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• A physical key-exchange problem

• Alice has:

• Bob has
A A AB

B B

Public Key Cryptography

• Key-Exchange Protocol
BobAlice

AB

A B

Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box
Lock and send it

AB

A B

Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box
Lock and send it

A B

Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box
Lock and send it

A B

lock it too and
send back

B

Public Key Cryptography

• Key-Exchange Protocol
BobAlice

Put key in box
Lock and send it

A B

AB

lock it too and
send backRemove key A

send back

AB

Public Key Cryptography

• Key-Exchange Protocol
BobAlice

Put key in box
Lock and send it

A B

B

lock it too and
send back

Remove key B
obtain key AB

Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• Security goal: even after observing the messages, the shared key k should
be undisguisable from a uniform key

Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• Security goal: even after observing the messages, the shared key k should
be undisguisable from a uniform key

• Discrete-logarithm problem

• Given prime p and q, and X

• It would be easy to have Y = pX mod q

• But it is very hard to compute X when giving Y

Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Alice and Bob agree on a random safe prime p (modulo) and a base g

(which is a primitive root modulo p)

• Alice chooses a secret key a → public key KA= ga mod p

• Bob chooses a secret key b → public key KB= gb mod p

• Alice and Bob set up a shared key

(gb)a mod p = (ga)b mod p= gab mod p

• Only a and b are keeping secret

Public Key Cryptography

• Diffie-Hellman key-exchange

BobAlice

G (group generation) -> p, g

KA= ga mod p KB= gb mod pKA
KBKA
KB

KAB= gab mod p KAB= gab mod p

Does Diffie-Hellman secure the communication channel?

Public Key Cryptography

• Diffie-Hellman key-exchange

BobAlice

KA= ga mod p KB= gb mod pKA
KBKA
KB

KAB= gaT mod p KAB= gTb mod p

Authenticate the public key

KT = gT mod p

KTKT

Does Diffie-Hellman secure the communication channel?

G (group generation) -> p, g

Public Key Cryptography

• (Public) Key Management and Distribution

• Encryption: Public key encrypts, private key decrypts

m=DPrivate_Key(EPublic_Key(m))

• Assume the parties are able to obtain the correct copies of (each other’s)
public key

Public Key Cryptography

• (Public) Key Management and Distribution

• Encryption: Public key encrypts, private key decrypts

m=DPrivate_Key(EPublic_Key(m))

• Distributing public keys

• Point-to-point delivery over trusted channels

• Direct access to a trusted file

• Use an online trusted services

• Offline certificates that are authorizable

• Public keys are transported in certificates issued by a certificate authority
(CA)

Public Key Cryptography

• Public Key Infrastructure (PKI)

• Use signatures for secure key distribution

• Certificates: A digital document cryptographically binds an entity’s
identity and its public key, allowing other entities to gain trust of the
authenticity of the public key

• Certificate Authority (CA): issue and manage certificates of entities

• PKI: A comprehensive framework that combines cryptographic
techniques, protocols, policies, and management ecosystem to support
secure and reliable use of public keys

Public Key Cryptography

• Public Key Infrastructure (PKI)

• Use signatures for secure key distribution

• Certificate Authority (CA)

• Public key P.e

• Private key P.s

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

Public Key Cryptography

• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

Public Key Cryptography

• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

• Alice obtains and wants to verify (Bob, PBob.e)

• Alice obtains PBob.e

• Alice requires CertCA→Bob

• Alice verifies that ValidateCA.e(Bob, PBob.e, CertCA→Bob)

ValidateCA.e(CertCA→Bob)

Public Key Infrastructure (PKI)

• Public Key Infrastructure (PKI)

CA’s public key

CA.e

ValidateCA.e(CB)

CA.e / CA.s

Bob.e / Bob.s

• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

• Alice obtains and wants to verify (Bob, PBob.e)

• Alice obtains CertCA→Bob

• Alice verifies that ValidateCA.e(Bob, PBob.e, CertCA→Bob)

• As long as …

• CA is trustworthy and CA’s key pair has not been compromised

Public Key Infrastructure (PKI)

• Public Key Infrastructure (PKI)

CA’s public key

CA.e

Bob.e / Bob.s

CA.e / CA.s

Public Key Infrastructure (PKI)

• Public Key Infrastructure (PKI)

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCA2

.s(CA1.e)

CA2’s public key

CA2.e

Bob.e / Bob.s

CA1.e / CA1.s

CA2.e / CA2.s

Certificate

CCA1

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)

• Root-of-Trust

• Alice will only need to securely obtain a small number of Public key CA.e

• Ensure secure distribution for few initial CA.e

• Root CAs

• Root CAs issues Certificate for intermediate CA CertRoot_CA.s→CA

ValidateRoot_CA.e(CertRoot_CA.s→CA)

• Intermediate CAs issue Certificate for subject (website)

ValidateCA.e(CertCA.s→Bob)

Public Key Infrastructure (PKI)

• Root-of-Trust

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCA2.s(CA1.e)

CA2’s public key

CA2.e

Bob.e / Bob.s

CA1.e / CA1.s

CA2.e / CA2.s

Certificate

CCA1

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)

• Root-of-Trust

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

X.509

• Dealing with CA failures

• Certificates are all about Trust

CertCA→Bob = SignCA.s(Bob, PBob.e)

Public Key Infrastructure (PKI)

• Dealing with CA failures

• Certificates are all about Trust

CertCA→Bob = SignCA.s(Bob, PBob.e)

• Equivocating or misleading (domain) name (Rogue Certificates)

• Intentionally signed and issued by malicious CAs Certificates

• Squatting misleading names

Public Key Infrastructure (PKI)

• Securing the Web in practice

• SSL: Secure Socket Layer (Netscape, mid-’90s)

• TLS: Transport Layer Security: an IEEE version of SSL

• For standardizing SSL

• TLS 1.0 (1999)

• TLS 1.2 (2008, current)

• TLS 1.3 (2018, adopting)

• Used by every web browser for HTTPS connections

TLS and SSL

• Securing the Web in practice

• SSL: Secure Socket Layer (Netscape, mid-’90s)

• TLS: Transport Layer Security

TLS and SSL

• TLS/SSL Operations

• Handshake layer

• Server/client authentication, cipher suite negotiation, key exchange

• Record layer

• Secure communications between client and server using exchanged
session keys

TLS and SSL

Client

Syn + Ack
SSL

Handsake

Data

Transfer

SSL

Teardown

Fin + Ack

Server

• TLS/SSL Operations

- HTTPS

TLS and SSL

DNS

bank.com

1.2.3.4

1. https://bank.com

2a. Resolve:

bank.com → ?

2b. … → 1.2.3.4

6. Display:

-- Page

-- URL

-- Padlock

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

5a. Get bank.com/index.html

5c. Post (userid/pw)

5. TLS session

CA

4b. P.e, Cert=SCA(P.e, bank.com)

5b. <html>…(login form)

0b.Cert

3a. TCP SYN

3b. TCP SYN+ACK

3. TCP handshake

0a.P.e

• TLS/SSL Operations

- HTTPS

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com)

• Handshake Layer

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com)

• rC and rS: Nonces for protecting against replay

• Handshake Layer

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com)

• kC and kS: derived from the master key kM

• Handshake Layer

TLS and SSL

• Cipher-suite negotiation (SSLv2)

TLS and SSL

• Vulnerable to downgrade attack

• Cipher-suite negotiation (SSLv2)

TLS and SSL

• Vulnerable to downgrade attack

• Cipher-suite negotiation (SSLv2)

TLS and SSL

• SSLv3 improvement: authenticate the handshake message with
the finish message

TLS and SSL

• Record layer

• Secure communications between client and server using established keys

• Assume reliable underlying communication (TCP)

Message sent by the application, e.g., HTTP request

Message sent by t he application, e.g. HTTP request

<16KB <16KB <16KB

Fragmentation

Compress

MAC

Encrypt

Pad (if needed)

Header

• Reasons for revoking (i.e., invalidating) certificate

• Key compromise

• CA compromise

• Affiliation changed - Object names or attribute

• Cessation – no longer needed

• How to inform replying parties?

• Wait for end of validity period (short-lived certificated)

• Distribute Certificate Revocation List

• Online status check - Online Certificate Status Protocol

PKI: Revoking certificates

• Certificate Revocation List (CRL)

• A list of certificates that has been
revoked before their expiration dates

• Issued and signed by a CA

• Updated at regular intervals

• Before relying on a certificate, an
entity needs to check that the
certificate is not included in the latest
CRLs

PKI: Revoking certificates

This update (date/time)

Version of CRL format

Signature on the above fields

CRL Extensions

….

CRL Entry…

CRL

Entry

Subject (user) Distinguished Name (DN)

Next update (date/time) - optional

CRL Issuer Distinguished Name (DN)

Signature Algorithm Object Identifier (OID)

S
ig

n
ed

 f
ie

ld
s

Certificate

Serial Number

Revocation

Date

CRL entry

extensions

Serial… Date… extensions

X.509 CRL

• Revocation is hard

• CRLs contain all revoked certificates – huge!

• CRLs are not immediate

• Affiliation changed - Object names or attribute

• Frequent CRLs – more overhead

• Solutions

• Distributed CRLs - split certificates to several CRLs

• Delta CRLs – only new revocation since last “base” CRL

• Short validity for certificates – no need to revoke them

PKI: Revoking certificates

• Online Certificate Status Protocol (OCSP)

• Most browsers don’t use CRLs

• Efficiency

• Frequent CRLs – more overhead

• OCSP

• Check validity of certificates as needed

PKI: Revoking certificates

• Online Certificate Status Protocol (OCSP)

• Most browsers don’t use CRLs

• Efficiency

• Frequent CRLs – more overhead

• OCSP

PKI: Revoking certificates

• Why and How CAs fail

• (Root) CAs trusted in browsers

• Every CA can certify any domain (name)

• Bad certificates

• Equivocation: rogue certificates

• Misleading certificates (e.g., squatting names)

• How to improve defense against bad CAs/certificates

PKI: Certificate Transparency (CT)

• Certificate Transparency (CT)

• A proposal originating from Google, for improving the transparency and
security of the (Web) PKI

• Goals

• Detecting equivocating certificates by monitoring specific domain name

• Detecting suspect CAs/certificates

• An extensive standardization

• Already enforced by Chrome and supported other major browsers

• Many websites and CAs deploy CT, making CT the most important
development in PKI since X.509

PKI: Certificate Transparency (CT)

• CT Entities

• Loggers: provide public logs of certificates

• CAs send each certificate to loggers, who add the certificate to the log

• Loggers provide accountability for the public availability of certificates

• Google and few CAs operate loggers

• Monitors: monitor the certificates logged by (many) loggers

• Detect (suspicious) changes of certificates for domain owners

• Operated by Facebook and few other CAs and companies

• Auditors: ensure the logger provides exactly the same log to all parties

• Typically implemented and performed by relying parties (browsers)

PKI: Certificate Transparency (CT)

• CT Operations

PKI: Certificate Transparency (CT)

Relying Party

(Browser)

Web Service

Certificate

Authority

TLS handshake

(Certificate)

CA issues

Certificate
upload

Public key
1 2

Relying Party

(Browser)

Web Service

Certificate

Authority

TLS handshake

(Certificate with SCT)

CA issues

Certificate

with SCT

upload

Public key
1 4

CT Logger
2

3

Certificate

submission

Log response

SCT: Signed Certificate

Timestamp

(time that the certificate was

added to log, serial number)

• Certificate Transparency (CT)

• Goals

• Detecting equivocating certificates by monitoring specific domain name

• Detecting suspect CAs/certificates

PKI: Certificate Transparency (CT)

• Certificate Transparency (CT)

• Goals

• Detecting equivocating certificates by monitoring specific domain name

PKI: Certificate Transparency (CT)

Domain

Owner
Monitor

Loggers

Domain(s), $

Monitoring

Certificate

changes

Detecting

Certificate

changes

Certificate

changes

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

X.509

Network Security - Cryptography

• TCP/IP

• DoS Attacks

• DNS

• BGP

• CDN

• Applied Cryptography

• PKI

• TLS/SSL and HTTPS

• DNSSEC (USENIX Security’17)

• RPKI (NDSS’17)

• HTTPS/CDN (IEEE S&P’14)

Major Reference

• Amir Herzberg, Foundations of Cybersecurity, Volume I: An Applied Introduction to Cryptography,

2021 (Draft).

• Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography, 2nd Edition.

Computer and Network Security

Fall 2025

CS 772/872: Advanced

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 67
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

