CS 772/872: Advanced

Computer and Network Security
Fall 2025

Course Link:
https://shhaos.github.io/courses/CS872/netsec-fall25.html

Instructor: Shuai Hao

shao@odu.edu
www.cs.odu.edu/~haos

)
T OLD DOMINION T T T T

Network Security — Cryptography

* Applied Cryptography
* PKI
TLS/SSL and HTTPS

DNSSEC (USENIX Security’17)
RPKI (NDSS’17)
HTTPS/CDN (/IEEE S&P’14)

M

Cryptography Foundations

* Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

* Confidentiality: only sender, intended receiver should “understand”
message contents

* sender encrypts message
* receiver decrypts message

* Integrity: sender, receiver want to ensure message not altered (in transit,
or afterwards)

e Authentication: sender, receiver want to confirm identity of each other

M

Cryptography Foundations

* Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

 Classical Cryptography
Always assumed that two parties shared some secret information (Key)
* Private-kay or symmetric-key
* “Modern” Cryptography
No pre-shared secret is requited for two parties

* Public-key or asymmetric-key

M

Cryptography Foundations
* (Symmetric Key) Encryption

Encrypt (encode) plaintext into ciphertext
* Only legit-recipient can decrypt ciphertext to plaintext

key key

AV plaintext

¢

ciphertext plaintext |

M

Cryptography Foundations

* (Symmetric Key) Encryption

Encrypt (encode) plaintext into ciphertext
* Only legit-recipient can decrypt ciphertext to plaintext
Stream Ciphers
Block Ciphers
DES (Data Encryption Standard)
AES (Advanced Encryption Standard)

M

Cryptography Foundations

* Correctness Key k
Plaintext Ciphertext
Correctness: m=D(E,(m)) m c=Ey(m)
Key k
Ciphertext Plaintext

¢ m=D,(c)

Key k Key k

Plaintext Vo
phertext :
g - = - Ny

M

Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack

Chosen-plaintext attack

* Attacker was able to obtain some cipher text, encrypted using the
same key, corresponding to plaintext of the attacker's choice (an
oracle)

M

Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack
Chosen-plaintext attack

Chosen-ciphertext attack

e Attacker is able to get a party to decrypt certain cipher texts of that
attacker's choice.

M

Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack
Chosen-plaintext attack

Chosen-ciphertext attack

Regardless of any prior information the attacker has about the plaintext, the ciphertext
observed by the attacker should leak no additional information about the plaintext.

M

Cryptography Foundations

* Threat Model for Encryption
Adversary’s Goal
Recover the secret key
Recover plaintext from ciphertext, without knowing key

Learn partial information about plaintext from the ciphertext

M

Cryptography Foundations

 Authentication

Encryption ensures Confidentiality
What about Integrity and Authentication
* Does Alice send this message?

key

b
Y plaintext

\

ciphertext plaintext |’

M

Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
Use shared key & to authenticate messages

m, MACk(m)

M

Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
(m, 1ag) is valid iif Tag = MAC,(m)

M

Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
Sender could be any key-holder including recipient
* Specify sender and recipient in the message
Could be re-transmission (replay attack)

* Add time/sequence challenge

m, MAC,(m) X Q

M

Cryptography Foundations

 Hash Functions

Hash function i(m) allow verification of message: Integrity

* Any length of message m > fixed length of hash /(m)
Also confidentiality: one-way function

* Hash value /#(m) does not expose m
Collision-resistance

* h(m) # h(m’)

* Pseudo-randomness

* Every hash has collisions: |input| >> |output|

 But hard to find collisions

M

Cryptography Foundations

 Hash Functions

Hash function i(m) allow verification of message: Integrity
* Any length of message m > fixed length of hash /(m)
Also confidentiality: one-way function
* Hash value /#(m) does not expose m
Practical hash functions
 MD5: 128-bit output; collisions found in 2004
 SHA-1: 160-bit; theoretical analysis indicates weakness
e SHA-2: 256/512-bit output
* SHA-3: different design than previous SHAs; results of a public competition

M

Cryptography Foundations

 Hash Functions

Hash functions: maps arbitrary length inputs to a fixed length output
* Input: message m (binary strings)
e Output: (short) binary strings n (message digest)

Keyed or unkeyed

m m
k > h h
h; (m) h(m)

)

Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem
* How do users share a key in the first place?
* Need to share the key using a secure channel
* Trusted carrier/face-to-face meeting

* Key Distribution Center

M

Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem

Key management problem
* When each pair of users might need to communicate securely
* O(N?) keys overall

M

Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem
Key management problem
Lack of “open systems”

e Two users who have no prior relationship want to communicate securely

M

Public Key Cryptography

* New direction: can encryption key be public?
Anyone can encrypt the message using public encryption key
Decryption key will be different (and private)
* only the key-holder can decrypt it

Each entity, Alice, generate a key pair (£, S).
P 1s the public key and S is the secret private key
Requirement: 1t must be infeasible for an adversary recovering S from P

Example: S = (p, g) where p, g are randomly-selected large prime numbers,
and P = pg

M

Public Key Cryptography

* New direction: can encryption key be public?
Anyone can encrypt the message using public encryption key
Decryption key will be different (and private)
* only the key-holder can decrypt it

Encryption Key e (e.d) Decryption Key d
(public) rivate)
e d

Ciphertext Plaintext
c=E (m) m=D,(E,(m))

Plaintext
m

M

Public Key Cryptography

* Public Key Cryptosystem
Encryption: Public key encrypts, private key decrypts
Also Authentication: Digital Signature
* Sign with private key, validate with public key

Private signing (s.v) Public validation

key S/ w
Message m, 6=S,(m) m if V., (m, 6)=0OK
Error otherwise

M

Public Key Cryptography

* Public Key Cryptosystem
Encryption: Public key encrypts, private key decrypts
Also Authentication: Digital Signature
* Sign with private key, validate with public key
Public key cryptosystem also has drawbacks: significantly expensive and slow
* Public key cryptosystem: exchange a shared, private key
* Private key encryption: establish a secure communication channel

M

Public Key Cryptography

* Key-Exchange Protocol
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

M

M

Public Key Cryptography

* Key-Exchange Protocol
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

A physical key exchange problem

* Alice has: f *w W
* Bob has
Q

Public Key Cryptography

* Key-Exchange Protocol y

) Alice

M

Public Key Cryptography

* Key-Exchange Protocol = y
J Alice

AB - ﬁﬁﬂ\
Put key in box N A

Lock and send it

M

Public Key Cryptography

* Key-Exchange Protocol = y
J Alice

¥
Put key in box N A

Lock and send it

M

Public Key Cryptography

* Key-Exchange Protocol = 0 y
) Alice

Put key in box
Lock and send it

lock it too and
send back

M

Public Key Cryptography

* Key-Exchange Protocol = y 50

J Alice Bob

Put key in box
Lock and send it

Remove key A m\

send back

lock it too and
send back

M

M

Public Key Cryptography

 Key-Exchange Protocol &
J Alice

Put key in box
Lock and send it

lock it too and
send back

Remove key B
obtain key AB

Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

Security goal: even after observing the messages, the shared key & should
be undisguisable from a uniform key

)

Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

Security goal: even after observing the messages, the shared key & should
be undisguisable from a uniform key

Discrete-logarithm problem
* Given prime p and g, and X
* It would be easy to have Y = p* mod ¢
e Butitis very hard to compute X when giving Y

M

Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)

* Alice and Bob agree on a random safe prime p (modulo) and a base g
(which is a primitive root modulo p)

* Alice chooses a secret key a — public key K ,= g? mod p
* Bob chooses a secret key b — public key K= g” mod p
* Alice and Bob set up a shared key

(g®)* mod p = (g%)® mod p= g*° mod p
Only a and b are keeping secret

M

Public Key Cryptography

* Diffie-Hellman key-exchange

#i

3

ﬁ) A G (group genenation) -> p, g k “
Alice Bob
K,=g"modp Kp= g mod p
K 5= g" mod p K 5= g" mod p

Does Diffie-Hellman secure the communication channel?

M

Public Key Cryptography

* Diffie-Hellman key-exchange

5

J A G (group genenation) -> p, g X “
Alice Bob
K,=g"modp Kp= g mod p
K7
K= g| modp
K 5= g*" mod p

K z= gTb mod p
Does Diffie-Hellman secure the communication channel?
Authenticate the public key

M

Public Key Cryptography

* (Public) Key Management and Distribution
Encryption: Public key encrypts, private key decrypts
m=D Private Key (E Public Key (I’I’l))

Assume the parties are able to obtain the correct copies of (each other’s)
public key

M

Public Key Cryptography

* (Public) Key Management and Distribution
Encryption: Public key encrypts, private key decrypts

m :DPrivate_Key (EPublic_Key (m))
Distributing public keys
* Point-to-point delivery over trusted channels
* Direct access to a trusted file
* Use an online trusted services

e Offline certificates that are authorizable

Public keys are transported in certificates issued by a certificate authority
(CA)

M

M

Public Key Cryptography

e Public Key Infrastructure (PKI)
Use signatures for secure key distribution

 Certificates: A digital document cryptographically binds an entity’s
identity and its public key, allowing other entities to gain trust of the
authenticity of the public key

* Certificate Authority (CA): issue and manage certificates of entities

* PKI: A comprehensive framework that combines cryptographic
techniques, protocols, policies, and management ecosystem to support
secure and reliable use of public keys

Public Key Cryptography

e Public Key Infrastructure (PKI)
Use signatures for secure key distribution
* Certificate Authority (CA)

e Public key Pe
* Private key Ps

Bob asks the CA to sign the binding (Bob, Py, ,)
* Certey_,pop = Sighcy ((Bob, Py)
* CA must verify Bob’s identity out of band

M

Public Key Cryptography

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, ,)
* Certcy_pop = Sighcy ((Bob, Py,)
* CA must verify Bob’s identity out of band

M

M

Public Key Cryptography

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, .)
* Certey_,pop = Sighcy ((Bob, Py)

e CA must verify Bob’s identity out of band
Alice obtains and wants to verify (Bob, Py, .)

* Alice obtains Py, .

* Alice requires Certq,_ 5,5

* Alice verifies that Validate ., ,(Bob, Py, ., Certy, .p,1)
Validate -, (Certoy g,

M

Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

e

e
7
e
e

CA’s public key ////

Al CAe -~ Bob’s public key 1 '|Certificate
ee 7 Bob.e e
(relying party) e o
P A//// Certificate Cpg: .
Cp = Signc a.s(bob.com, Bob.e, . . .) (Subject

CA.e / CA.s

/{Certiﬁcate Authorit

y
(Aka CA or Issuer) }

)

ValidateCA_e(CB)

L(e.g, website bob.com))}

Bob.e / Bob.s

Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, .)
* Certey_,pop = Sighcy ((Bob, Py)

e CA must verify Bob’s identity out of band
Alice obtains and wants to verify (Bob, Py, .)

* Alice obtains Cert 4 _,z,s

* Alice verifies that Validate, ,(Bob, Py, ., Certoy 5,1
As long as ...

e CAis trustworthy and CA’s key pair has not been compromised

M

M

Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Alice
(relying party)

p -
-
-
-
Vs

7~
7
e
7
e
e

CA’s public key ////

) CA.e//// Bob’s public key i '|Certificate
¢ 7 Bob.e L_CB
Certificate Cp: LY
Cp = Signc a.s(bob.com, Bob.e, . . .) (Subject

CA.e / CA.s

/{Certiﬁcate Authorit

y
(Aka CA or Issuer) }

)

L(e.g, website bob.com))}

Bob.e / Bob.s

Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Certificate CA,e/ CA,s
CAse / CAys Certificate Authority ——_—_—(_j —(ié_l—_—_ﬁfg_ﬁ_c—ifﬁ_(—(_jé —1_'—e_) ——- Certificate Authority
(Aka CA or Issuer) CA/’s public key _~ (Aka CA or Issuer)

. s CA,.s //// ,
CAy’s public key | -7 o
CAj.e I CA/’s public key //// : :

: | CApe -~ Bob’s public key 1 '|Certificate

AllCe | 7 Certificate Bob.e : ! Cp
(relying party]? e Coa, | |
| -7 L
P i/,// Certificate Cp: L
Cp = Signc a.s(bob.com, Bob.e, . . .) (Subject

Validateca; o(Ceay)

{(e.g, website bob.com))

)

Validatecy .(Cp) Bob.e / Bob.s

Public Key Infrastructure (PKI)

* Root-of-Trust
Alice will only need to securely obtain a small number of Public key CA.e

 Ensure secure distribution for few initial CA4.e
Root CAs

* Root CAs issues Certificate for intermediate CA Cert,y; c4.5-cu

Valida teRoot_CA. e(Cer tRoot_CA. s— CA)

* Intermediate CAs issue Certificate for subject (website)
ValidateCA.e(CertCA.SHBob)

M

Public Key Infrastructure (PKI)

 Root-of-Trust

CA,.e / CA,.s | Certificate Authority |-
(Aka CA or Issuer)

CAy’s public key f
CAg.e

|
|

|

|

Alice I
(relying party)

>

Ve

I
I
* 7
e
e

7

Certificate
Cea i Signca,(CAs.e)

CA/’s public key

CAJ.S

7

CA;’s public key Rl

7

7

e

CA1 e //
- Certificate
-7 CCA,

Certificate Cp:

Cp = Signc a.s(bob.com, Bob.e, . .

CAl.e / CAZ.S

-+ Certificate Authority
(Aka CA or Issuer)

Bob’s public key i '|Certificate
Bob.e | : Chp
|
) (Subject

)

Validateca; o(Ceay)
Validatecy .(Cp)

{(e.g, website bob.com))

Bob.e / Bob.s

Public Key Infrastructure (PKI)

 Root-of-Trust
Root CA

Certificate

Ccy = Sign (CA,.e)
CAp,...c / CAp,.,.s| Certificate Authority __ Ay P CARgorst

CAl.e / CAZ.S

(Aka CA or Issuer) N CA/’s public key

CApg,o:s public key

CAI.S

7

Certificate Authority
(Aka CA or Issuer)

Bob’s public key
Bob.e

- — — - — = = - — = - = o

Certificate
Cp

|

CApyope | CA/’s public key////

. | CA,e -~
.Allce | /// Certificate
(relying pa,rty? //// Cea,
I 7
P v /// Certificate Cpy:
éeec -

Validateca; o(Ceay)
Validatecy .(Cp)

Cp = Signc a.s(bob.com, Bob.e, . . .) (Subject
L(e.g, website bob.com))

Bob.e / Bob.s

Public Key Infrastructure (PKI)

(Root CA

I (Aka CA or Issuer) “

N P
CApg,ors public key: -
CApyor€ | CA,’s public key _~
. : CAl.e -7
Alice ﬂ “|Certificate

Certificate

' Cea = Signca,, (CAre)
CApyore / CAROE)t”S Certificate Authority __ Ay T CARoors T

Cea,

Certificate Cp:
Cp = Signga.s(bob.com, Bob.e, . . .) (Subject

Certificate Authority
(Aka CA or Issuer)

Bob’s public key
Bob.e

- - — - — = = = - — - = o

Certificate
Cp

@& Secure | https://

L(e.g, website bob.com))

Bob.e / Bob.s

Public Key Infrastructure (PKI)

* Dealing with CA failures
Certificates are all about Trust

Certey_pop = Signcy ((Bob, Py,)

M

Public Key Infrastructure (PKI)

* Dealing with CA failures

Certificates are all about Trust

CertCA—)BOb - SignCA.S(BOb’ PBob.J

Equivocating or misleading (domain) name (Rogue Certificates)
* Intentionally signed and issued by malicious CAs Certificates
e Squatting misleading names

DROPPING THE DOT SWITCHING TWO
AFTER M I DROPPING ONE LETTER I CETTERS l
wwwaa.com apple.om faecbook.com
DOUBLING CHARACTERS USING SIMILAR PRESSING A WRONG
| LOOKING CHARACTERS KEY
@ Secure | httpS-/ / twiitter.com . google.com (I vs) . costko.com .

M

TLS and SSL

e Securing the Web in practice
SSL: Secure Socket Layer (Netscape, mid-"90s)
TLS: Transport Layer Security: an IEEE version of SSL
* For standardizing SSL
* TLS 1.0 (1999)
* TLS 1.2 (2008, current)
* TLS 1.3 (2018, adopting)

* Used by every web browser for HTTPS connections

M

TLS and SSL

e Securing the Web in practice

SSL: Secure Socket Layer (Netscape, mid-"90s)

TLS: Transport Layer Security

TLS Handshake HTTPS HTTP
TLS record
TCP sockets API
TCP
IP

)

TLS and SSL

e TLS/SSL Operations
Handshake layer
 Server/client authentication, cipher suite negotiation, key exchange
Record layer

e Secure communications between client and server using exchanged
session keys

Server
SSL :
Syn +/Ack\ /Han dsak _: Fin H\Ack
Client - S5k >
Teardown

M

TLS and SSL

* TLS/SSL Operations 1.(_) https://bank.com

- HTTPS

6. Display:
-- Page

-- URL

-- Padlock

)

2a. Resolve:
bank.com — ?

N
>

<
<«

2b.... > 1.2.34

3. TCP handshake

v

3a. TCP SYN
- 3b. TCP SYN+ACK

bank.com
1.2.3.4

4. TLS handshake

4a. Hello >

> 4b. Pe, Cert=S-4(P.e, bank.com)
4c. E, (Premaster key) >

5. TLS session

5a. Get bank.com/index.html >
s 5b. <html>...(login form)

5c. Post (userid/pw) >

TLS and SSL

e TLS/SSL Operations
- HTTPS

M

)

TLS and SSL

* Handshake Layer 4a. Hello
y 4b. Pe, Cert=Sc,(Pe, bank.com)

4. TLS handshake

4c. £, (Premaster key)

I
L

n

2

Client C Server S (s.com)
/v Client hello: client version (v¢), client random (r¢) >
K
»
;\ '\ <«————— Server hello: server random (rg) and certificate: Sc 4 (S.e,s.com,...)
A Client key exchange: Eg .(kpr); .

Client finish: Ey_ (rg)

Server finish: Ey(r¢)

* roand rg: Nonces for protecting against replay

)

TLS and SSL

* Handshake Layer 4a. Hello
y 4b. Pe, Cert=Sc,(Pe, bank.com)

4. TLS handshake

4c. £, (Premaster key)

I
L

n

2

Client C Server S (s.com)
/v Client hello: client version (v¢), client random (r¢) >
K
»
;\ '\ <«————— Server hello: server random (rg) and certificate: Sc 4 (S.e,s.com,...)
A Client key exchange: Eg .(kpr); .

Client finish: Ey_ (rg)

Server finish: Ey(r¢)

* k- and kg: derived from the master key k),

TLS and SSL

 Handshake Layer

Client C Server S (s.com)
/ Client hello: client version (v¢), client random (r¢) >
T
!}"’ < Server hello: server random (rg) and certificate: Sc 4 s(S.e,s.com,...)
9 Client key exchange: Fg .(kpr);
- Client finish: Ey . (rs) >
- Server finish: Ey (r¢)

)

)

TLS and SSL

* Cipher-suite negotiation (SSLv2)

Client

79

q s
»

,@\’

'V \

Client hello: client random (r¢),

A

Server

cipher-suites=RC4_128 MD5, RC4_40 MD5, DES 64 MD5

Server hello: server random (rg), certificate: Sca . s(S.e,s.com,..

and cipher-suites=RC4_128 MD5, RC4_40_MD5

)

-
!

Client key exchange: RC4_128 MD5, Eg . (kpr);

Client finish: Ey (rs)

A

Server finish: Ej (r¢)

Y

* Vulnerable to downgrade attack

)

TLS and SSL

* Cipher-suite negotiation (SSLv2)

Client

q

)

54

G
4

&

Client hello: client random (r¢),
cipher-suites=RC4_128 MD5, RC4_40_MD5

MitM

Client hello: client random (r¢),
cipher-suites=RC4_40_MD5

Server

A

Server hello: server random (rg), certificate: Sca s(S.e,s.com,...)
and cipher-suites=RC4_40_MD5

-
!

Client key exchange (RC4_40_MD5): Eg .(kar);
Client finish: Ey, (rs)

Y

A

Server finish: Ey . (r¢), Exg(ID)

* Vulnerable to downgrade attack

)

TLS and SSL

* Cipher-suite negotiation (SSLv2)

T8
‘ B4

)

Lo

-

Client

Client hello: client random (r¢),
cipher-suites=RC4_128 MD5, RC4_40_MD5

MitM

Client hello: client random (r¢),
cipher-suites=RC4_40_MD5

Server

A

Server hello: server random (rg), certificate: Sca s(S.e,s.com,...)
and cipher-suites=RC4_40_MD5

-
!

-

Client key exchange (RC4_40_MD5): Eg .(kar);
Client finish: Ey, (rs)

Y

A

Server finish: Ey . (r¢), Exg(ID)

the finish message

e SSLv3 improvement: authenticate the handshake message with

TLS and SSL

* Record layer
Secure communications between client and server using established keys

Assume reliable underlying communication (TCP)

Message sent by the application, e.g., HTTP request
<16KB <16KB <16KB

Fragmentation | Message sent by t he application, e.g. || HTTP request

MAC
Encrypt

Header
O

PKI: Revoking certificates

* Reasons for revoking (i.e., invalidating) certificate
Key compromise
CA compromise
Affiliation changed - Object names or attribute

Cessation — no longer needed

* How to inform replying parties?
Wait for end of validity period (short-lived certificated)
Distribute Certificate Revocation List
Online status check - Online Certificate Status Protocol

)

PKI: Revoking certificates

* Certificate Revocation List (CRL) X.509 CRL
A list of certificates that has been / [Version of CRL format
revoked before their expiration dates Signature Algorithm Object |dentifier (OID)
] CRL Issuer Distinguished Name (DN)
Issued and signed by a CA = | | This update (date/time)
Updated at regular intervals £ | [Next update (date/time) - optional
§D< Subject (user) Distinguished Name (DN)
“ | ICRL | Certificate | Revocation | CRL entry
Before relying on a certificate, an il
- CRL Entry... | Serial... | Date...| extensi
entity needs to check that the W
certificate is not included in the latest | |CRL Extensions
CRLs Signature on the above fields

)

)

PKI: Revoking certificates

* Revocation is hard
CRLs contain all revoked certificates — huge!
CRLs are not immediate
 Affiliation changed - Object names or attribute

* Frequent CRLs — more overhead

* Solutions
Distributed CRLs - split certificates to several CRLs
Delta CRLs — only new revocation since last “base” CRL
Short validity for certificates — no need to revoke them

PKI: Revoking certificates

e Online Certificate Status Protocol (OCSP)
Most browsers don’t use CRLs
* Efficiency
* Frequent CRLs — more overhead

 OCSP
Check validity of certificates as needed

)

PKI: Revoking certificates

e Online Certificate Status Protocol (OCSP)
Most browsers don’t use CRLs

* Efficiency
* Frequent CRLs — more overhead
* OCSP OCSP Client OCSP Responder
(e.g., relying party) (CA or trusted OCSP server)

OCSP request:
version, {CertID1,...} [, signature] [, extensions]

Y

OCSP response:
ResponseStatus, producedAt, responses, signature

A

)

PKI: Certificate Transparency (CT)

 Why and How CAs fail
(Root) CAs trusted in browsers
Every CA can certify any domain (name)
Bad certificates
* Equivocation: rogue certificates
* Misleading certificates (e.g., squatting names)

* How to improve defense against bad CAs/certificates

M

PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)

A proposal originating from Google, for improving the transparency and
security of the (Web) PKI

Goals
e Detecting equivocating certificates by monitoring specific domain name
* Detecting suspect CAs/certificates

An extensive standardization
* Already enforced by Chrome and supported other major browsers

* Many websites and CAs deploy CT, making CT the most important
development in PKI since X.509

M

M

PKI: Certificate Transparency (CT)

* CT Entities

Loggers: provide public logs of certificates
* CAs send each certificate to loggers, who add the certificate to the log
* Loggers provide accountability for the public availability of certificates
* Google and few CAs operate loggers

Monitors: monitor the certificates logged by (many) loggers
* Detect (suspicious) changes of certificates for domain owners
* Operated by Facebook and few other CAs and companies

Auditors: ensure the logger provides exactly the same log to all parties
e Typically implemented and performed by relying parties (browsers)

PKI: Certificate Transparency (CT)

* CT Operations

Certificate
Authority

upload

CA 1ssues
Public key

, Certificate
I 1
I v

[Web Service }

A
I
1
I

1

1

TLS handshake
(Certificate)

Relying Party
(Browser)

)

Certificate

A
I
1

. CAissues
load

Hpod 9 Certificate
Public key .

[Web Service }

A
1
1
|
|

1

Relying Party
(Browser)

submission
Certificate -- 0 _______
CTL
[Authority I‘ ——————— 9 - :[ogger }

Log response

SCT: Signed Certificate
Timestamp

(time that the certificate was
added to log, serial number)

TLS handshake
: (Certificate with SCT)

PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)
Goals
* Detecting equivocating certificates by monitoring specific domain name
* Detecting suspect CAs/certificates

M

PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)
Goals

* Detecting equivocating certificates by monitoring specific domain name

Monitoring

Certificate 4 \

] 4 N

a A Domain(s), $ C A changes 4 N

Domain |[---------------- > N R J
_________________ Monitor

Owner | DRttt \ Loggers
Certificate Detecting

~ - changes b 4 Certificate \\ Y,
changes

M

Public Key Infrastructure (PKI)

(Root CA

I (Aka CA or Issuer) “

N P
CApg,ors public key: -
CApyor€ | CA,’s public key _~
. : CAl.e -7
Alice ﬂ “|Certificate

Certificate

' Cea = Signca,, (CAre)
CApyore / CAROE)t”S Certificate Authority __ Ay T CARoors T

Cea,

Certificate Cp:
Cp = Signga.s(bob.com, Bob.e, . . .) (Subject

Certificate Authority
(Aka CA or Issuer)

Bob’s public key
Bob.e

- - — - — = = = - — - = o

Certificate
Cp

@& Secure | https://

L(e.g, website bob.com))

Bob.e / Bob.s

M

Network Security - Cryptography

TCP/IP

DoS Attacks
DNS

BGP

CDN

Applied Cryptography
PKI
TLS/SSL and HTTPS

DNSSEC (USENIX Security’17)
RPKI (NDSS’17)
HTTPS/CDN (/IEEE S&P’14)

Major Reference

* Amir Herzberg, Foundations of Cybersecurity, Volume I: An Applied Introduction to Cryptography,
2021 (Draft).

e Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography, 2nd Edition.

)

CS 772/872: Advanced
Computer and Network Security

Fall 2025

Course Link:
https://[shhaos.github.io/courses/CS872/netsec-fall25.htmi

M

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 67
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

