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Network Security – Cryptography

• TCP/IP

• (D)DoS Attacks

• DNS

• BGP

• CDN

• Applied Cryptography

• PKI

• TLS/SSL and HTTPS

• DNSSEC (USENIX Security’17)

• RPKI (NDSS’17)

• HTTPS/CDN (IEEE S&P’14)



• Ensuring secrecy of the communication between two parties in the presence of 
malicious adversaries

Cryptography Foundations

• Confidentiality: only sender, intended receiver should “understand” 
message contents

• sender encrypts message

• receiver decrypts message

• Integrity: sender, receiver want to ensure message not altered (in transit, 
or afterwards)

• Authentication: sender, receiver want to confirm identity of each other



• Ensuring secrecy of the communication between two parties in the presence of 
malicious adversaries

• Classical Cryptography

• Always assumed that two parties shared some secret information (Key)

• Private-kay or symmetric-key

• “Modern” Cryptography

• No pre-shared secret is requited for two parties

• Public-key or asymmetric-key

Cryptography Foundations



• (Symmetric Key) Encryption

• Encrypt (encode) plaintext into ciphertext

• Only legit-recipient can decrypt ciphertext to plaintext

Encrypt Decrypt
plaintext plaintextciphertext

key key

Cryptography Foundations



• (Symmetric Key) Encryption

• Encrypt (encode) plaintext into ciphertext

• Only legit-recipient can decrypt ciphertext to plaintext

• Stream Ciphers

• Block Ciphers

• DES (Data Encryption Standard)

• AES (Advanced Encryption Standard)

Cryptography Foundations



• Correctness

Encrypt E Decrypt D
Plaintext

       m

Correctness: m=Dk(Ek(m))

Ciphertext

c=Ek(m)

Key kKey k

Encrypt E
Plaintext

       m

Ciphertext

c=Ek(m)

Key k

Decrypt D
Plaintext

m=Dk(c)

Key k

Ciphertext

           c

Plaintext Dk(c)

Cryptography Foundations



• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker 
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Attacker was able to obtain some cipher text, encrypted using the 
same key, corresponding to plaintext of the attacker's choice (an 
oracle)

Cryptography Foundations



• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker 
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack

• Attacker is able to get a party to decrypt certain cipher texts of that 
attacker's choice.

Cryptography Foundations



• Threat Model for Encryption

• Describe the assumption on the (computational) capability an attacker 
can gain

• Ciphertext-only attack

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack

Cryptography Foundations

Regardless of any prior information the attacker has about the plaintext, the ciphertext 
observed by the attacker should leak no additional information about the plaintext.



• Threat Model for Encryption

• Adversary’s Goal

• Recover the secret key

• Recover plaintext from ciphertext, without knowing key

• Learn partial information about plaintext from the ciphertext

Cryptography Foundations



• Authentication

• Encryption ensures Confidentiality

• What about Integrity and Authentication

• Does Alice send this message?

Encrypt Decrypt
plaintext plaintextciphertext

key key

Cryptography Foundations



Key k Key k

m, MACk(m)

Valid MAC → Only Bob and me 

know k. So he (or me…) sent m. 

• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• Use shared key k to authenticate messages

Cryptography Foundations



• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• (m, Tag) is valid iif Tag = MACk(m)

mm’

Key k Key k

MAC k (m)Tag ??

+ +

k = ??

MACk(m’) = ??

Cryptography Foundations



• Message Authentication Code (MAC)

• Allow a recipient to validate that a message was sent by a key holder

• Sender could be any key-holder including recipient

• Specify sender and recipient in the message

• Could be re-transmission (replay attack)

• Add time/sequence challenge

Cryptography Foundations

Key k Key k

m, MACk(m)

Key k

One of 

Cat, Bob 

(or me) 

sent m. 



• Hash Functions

• Hash function h(m) allow verification of message: Integrity

• Any length of message m → fixed length of hash h(m)

• Also confidentiality: one-way function

• Hash value h(m) does not expose m

• Collision-resistance

• h(m) ≠ h(m’)

• Pseudo-randomness

• Every hash has collisions: |input| >> |output|

• But hard to find collisions

Cryptography Foundations



• Hash Functions

• Hash function h(m) allow verification of message: Integrity

• Any length of message m → fixed length of hash h(m)

• Also confidentiality: one-way function

• Hash value h(m) does not expose m

• Practical hash functions

• MD5: 128-bit output; collisions found in 2004

• SHA-1: 160-bit; theoretical analysis indicates weakness

• SHA-2: 256/512-bit output

• SHA-3: different design than previous SHAs; results of a public competition

Cryptography Foundations



• Hash Functions

• Hash functions: maps arbitrary length inputs to a fixed length output

• Input: message m (binary strings)

• Output: (short) binary strings n (message digest)

• Keyed or unkeyed

Cryptography Foundations

𝑚

ℎ
ℎ(𝑚)

𝑚

ℎ
ℎ𝑘(𝑚)

k



Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a 
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• How do users share a key in the first place?

• Need to share the key using a secure channel

• Trusted carrier/face-to-face meeting

• Key Distribution Center



Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a 
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• Key management problem

• When each pair of users might need to communicate securely

• O(N2) keys overall



Public Key Cryptography

• Private-key cryptography allows two users who share a secret key to establish a 
secure channel

• The need to share this secret key incurs drawbacks

• Key distribution problem

• Key management problem

• Lack of ”open systems”

• Two users who have no prior relationship want to communicate securely



Public Key Cryptography

• New direction: can encryption key be public?

• Anyone can encrypt the message using public encryption key

• Decryption key will be different (and private)

• only the key-holder can decrypt it

Each entity, Alice, generate a key pair (P, S).

• P is the public key and S is the secret private key

• Requirement: it must be infeasible for an adversary recovering S from P

• Example: S = (p, q) where p, q are randomly-selected large prime numbers, 

and P = pq



Public Key Cryptography

• New direction: can encryption key be public?

• Anyone can encrypt the message using public encryption key

• Decryption key will be different (and private)

• only the key-holder can decrypt it

Encrypt E Decrypt D
Plaintext

       m
Plaintext

m=Dd(Ee(m))

Ciphertext

c=Ee(m)

Encryption Key e

(public)

KeyGen KG

(e,d)

e d

Decryption Key d

(private)



Public Key Cryptography

• Public Key Cryptosystem

• Encryption: Public key encrypts, private key decrypts

• Also Authentication: Digital Signature

• Sign with private key, validate with public key

Sign S Validate V
Message

       m
m if Vv(m, σ)=OK

Error otherwise

m, σ=Ss(m)

Private signing

key s

KeyGen KG

(s,v)

s v

Public validation

key v



Public Key Cryptography

• Public Key Cryptosystem

• Encryption: Public key encrypts, private key decrypts

• Also Authentication: Digital Signature

• Sign with private key, validate with public key

• Public key cryptosystem also has drawbacks: significantly expensive and slow

• Public key cryptosystem: exchange a shared, private key

• Private key encryption: establish a secure communication channel



Public Key Cryptography

• Key-Exchange Protocol

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets



Public Key Cryptography

• Key-Exchange Protocol

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• A physical key-exchange problem

• Alice has:

• Bob has
A A AB

B B



Public Key Cryptography

• Key-Exchange Protocol
BobAlice

AB

A B



Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box 
Lock and send it

AB

A B



Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box 
Lock and send it

A B



Public Key Cryptography

• Key-Exchange Protocol

A

BobAlice

Put key in box 
Lock and send it

A B

lock it too and
send back

B



Public Key Cryptography

• Key-Exchange Protocol
BobAlice

Put key in box 
Lock and send it

A B

AB

lock it too and
send backRemove key A

send back



AB

Public Key Cryptography

• Key-Exchange Protocol
BobAlice

Put key in box 
Lock and send it

A B

B

lock it too and
send back

Remove key B
obtain key AB



Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• Security goal: even after observing the messages, the shared key k should
be undisguisable from a uniform key



Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Secure against eavesdropping

• No prior shared secrets

• Security goal: even after observing the messages, the shared key k should
be undisguisable from a uniform key

• Discrete-logarithm problem

• Given prime p and q, and X

• It would be easy to have Y = pX mod q

• But it is very hard to compute X when giving Y



Public Key Cryptography

• Diffie-Hellman key-exchange

• Alice and Bob want to agree on secret (key)

• Alice and Bob agree on a random safe prime p (modulo) and a base g 

(which is a primitive root modulo p) 

• Alice chooses a secret key a  →  public key KA= ga mod p

• Bob chooses a secret key b  →  public key KB= gb mod p

• Alice and Bob set up a shared key

(gb)a mod p = (ga)b mod p= gab mod p

• Only a and b are keeping secret



Public Key Cryptography

• Diffie-Hellman key-exchange

BobAlice

G (group generation) -> p, g

KA= ga mod p KB= gb mod pKA
KBKA
KB

KAB= gab mod p KAB= gab mod p

Does Diffie-Hellman secure the communication channel?



Public Key Cryptography

• Diffie-Hellman key-exchange

BobAlice

KA= ga mod p KB= gb mod pKA
KBKA
KB

KAB= gaT mod p KAB= gTb mod p

Authenticate the public key

KT = gT mod p

KTKT

Does Diffie-Hellman secure the communication channel?

G (group generation) -> p, g



Public Key Cryptography

• (Public) Key Management and Distribution

• Encryption: Public key encrypts, private key decrypts

m=DPrivate_Key(EPublic_Key(m))

• Assume the parties are able to obtain the correct copies of (each other’s)
public key



Public Key Cryptography

• (Public) Key Management and Distribution

• Encryption: Public key encrypts, private key decrypts

m=DPrivate_Key(EPublic_Key(m))

• Distributing public keys

• Point-to-point delivery over trusted channels

• Direct access to a trusted file

• Use an online trusted services

• Offline certificates that are authorizable

• Public keys are transported in certificates issued by a certificate authority 
(CA)



Public Key Cryptography

• Public Key Infrastructure (PKI)

• Use signatures for secure key distribution

• Certificates: A digital document cryptographically binds an entity’s 
identity and its public key, allowing other entities to gain trust of the 
authenticity of the public key

• Certificate Authority (CA): issue and manage certificates of entities 

• PKI: A comprehensive framework that combines cryptographic 
techniques, protocols, policies, and management ecosystem to support 
secure and reliable use of public keys



Public Key Cryptography

• Public Key Infrastructure (PKI)

• Use signatures for secure key distribution

• Certificate Authority (CA)

• Public key P.e

• Private key P.s 

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band



Public Key Cryptography

• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band



Public Key Cryptography

• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

• Alice obtains and wants to verify (Bob, PBob.e)

• Alice obtains PBob.e

• Alice requires CertCA→Bob

• Alice verifies that ValidateCA.e(Bob, PBob.e, CertCA→Bob)

ValidateCA.e(CertCA→Bob)



Public Key Infrastructure (PKI)

• Public Key Infrastructure (PKI)

CA’s public key

CA.e

ValidateCA.e(CB)

CA.e / CA.s

Bob.e / Bob.s



• Public Key Infrastructure (PKI)

• Bob asks the CA to sign the binding (Bob, PBob.e)

• CertCA→Bob = SignCA.s(Bob, PBob.e)

• CA must verify Bob’s identity out of band

• Alice obtains and wants to verify (Bob, PBob.e)

• Alice obtains CertCA→Bob

• Alice verifies that ValidateCA.e(Bob, PBob.e, CertCA→Bob)

• As long as …

• CA is trustworthy and CA’s key pair has not been compromised

Public Key Infrastructure (PKI)



• Public Key Infrastructure (PKI)

CA’s public key

CA.e

Bob.e / Bob.s

CA.e / CA.s

Public Key Infrastructure (PKI)



• Public Key Infrastructure (PKI)

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCA2

.s(CA1.e)

CA2’s public key

CA2.e

Bob.e / Bob.s

CA1.e / CA1.s

CA2.e / CA2.s

Certificate

CCA1

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)



• Root-of-Trust

• Alice will only need to securely obtain a small number of Public key CA.e

• Ensure secure distribution for few initial CA.e

• Root CAs

• Root CAs issues Certificate for intermediate CA CertRoot_CA.s→CA

ValidateRoot_CA.e(CertRoot_CA.s→CA)

• Intermediate CAs issue Certificate for subject (website)

ValidateCA.e(CertCA.s→Bob)

Public Key Infrastructure (PKI)



• Root-of-Trust

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCA2.s(CA1.e)

CA2’s public key

CA2.e

Bob.e / Bob.s

CA1.e / CA1.s

CA2.e / CA2.s

Certificate

CCA1

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)



• Root-of-Trust

CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

ValidateCA.e(CB)

ValidateCA1.e(CCA1)



CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

X.509



• Dealing with CA failures

• Certificates are all about Trust

CertCA→Bob = SignCA.s(Bob, PBob.e)

Public Key Infrastructure (PKI)



• Dealing with CA failures

• Certificates are all about Trust

CertCA→Bob = SignCA.s(Bob, PBob.e)

• Equivocating or misleading (domain) name (Rogue Certificates)

• Intentionally signed and issued by malicious CAs Certificates

• Squatting misleading names

Public Key Infrastructure (PKI)



• Securing the Web in practice

• SSL: Secure Socket Layer (Netscape, mid-’90s) 

• TLS: Transport Layer Security: an IEEE version of SSL

• For standardizing SSL

• TLS 1.0 (1999)

• TLS 1.2 (2008, current)

• TLS 1.3 (2018, adopting)

• Used by every web browser for HTTPS connections

TLS and SSL



• Securing the Web in practice

• SSL: Secure Socket Layer (Netscape, mid-’90s) 

• TLS: Transport Layer Security

TLS and SSL



• TLS/SSL Operations

• Handshake layer

• Server/client authentication, cipher suite negotiation, key exchange

• Record layer

• Secure communications between client and server using exchanged 
session keys

TLS and SSL

Client

Syn + Ack
SSL

Handsake

Data

Transfer

SSL

Teardown

Fin + Ack

Server



• TLS/SSL Operations 

- HTTPS

TLS and SSL

DNS

bank.com

1.2.3.4

1.      https://bank.com

2a. Resolve: 

bank.com → ?

2b. … → 1.2.3.4

6. Display:

-- Page

-- URL

-- Padlock

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

5a. Get bank.com/index.html

5c. Post (userid/pw)

5. TLS session

CA

4b. P.e, Cert=SCA(P.e, bank.com) 

5b. <html>…(login form)

0b.Cert

3a. TCP SYN

3b. TCP SYN+ACK

3. TCP handshake

0a.P.e



• TLS/SSL Operations 

- HTTPS

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com) 



• Handshake Layer

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com) 

• rC and rS: Nonces for protecting against replay



• Handshake Layer

TLS and SSL

4a. Hello

4c. EP.e(Premaster_key)

4. TLS handshake

4b. P.e, Cert=SCA(P.e, bank.com) 

• kC and kS: derived from the master key kM



• Handshake Layer

TLS and SSL



• Cipher-suite negotiation (SSLv2)

TLS and SSL

• Vulnerable to downgrade attack



• Cipher-suite negotiation (SSLv2)

TLS and SSL

• Vulnerable to downgrade attack



• Cipher-suite negotiation (SSLv2)

TLS and SSL

• SSLv3 improvement: authenticate the handshake message with
the finish message



TLS and SSL

• Record layer

• Secure communications between client and server using established keys

• Assume reliable underlying communication (TCP)

Message sent by the application, e.g., HTTP request

Message sent by t he application, e.g. HTTP request

<16KB <16KB <16KB

Fragmentation

Compress

MAC

Encrypt

Pad (if needed)

Header



• Reasons for revoking (i.e., invalidating) certificate

• Key compromise

• CA compromise

• Affiliation changed - Object names or attribute

• Cessation – no longer needed

• How to inform replying parties?

• Wait for end of validity period (short-lived certificated)

• Distribute Certificate Revocation List

• Online status check - Online Certificate Status Protocol

PKI: Revoking certificates



• Certificate Revocation List (CRL)

• A list of certificates that has been 
revoked before their expiration dates

• Issued and signed by a CA

• Updated at regular intervals

• Before relying on a certificate, an 
entity needs to check that the 
certificate is not included in the latest 
CRLs

PKI: Revoking certificates

This update (date/time)

Version of CRL format

Signature on the above fields 

CRL Extensions

….

CRL Entry…

CRL 

Entry

Subject (user) Distinguished Name (DN)

Next update (date/time) - optional

CRL Issuer Distinguished Name (DN)

Signature Algorithm Object Identifier (OID)

S
ig

n
ed

 f
ie

ld
s

Certificate

Serial Number

Revocation

Date

CRL entry

extensions

Serial… Date… extensions

X.509 CRL



• Revocation is hard

• CRLs contain all revoked certificates – huge!

• CRLs are not immediate

• Affiliation changed - Object names or attribute

• Frequent CRLs – more overhead

• Solutions

• Distributed CRLs - split certificates to several CRLs

• Delta CRLs – only new revocation since last “base” CRL

• Short validity for certificates – no need to revoke them

PKI: Revoking certificates



• Online Certificate Status Protocol (OCSP)

• Most browsers don’t use CRLs

• Efficiency

• Frequent CRLs – more overhead

• OCSP

• Check validity of certificates as needed

PKI: Revoking certificates



• Online Certificate Status Protocol (OCSP)

• Most browsers don’t use CRLs

• Efficiency

• Frequent CRLs – more overhead

• OCSP

PKI: Revoking certificates



• Why and How CAs fail

• (Root) CAs trusted in browsers

• Every CA can certify any domain (name)

• Bad certificates

• Equivocation: rogue certificates

• Misleading certificates (e.g., squatting names)

• How to improve defense against bad CAs/certificates

PKI: Certificate Transparency (CT)



• Certificate Transparency (CT)

• A proposal originating from Google, for improving the transparency and 
security of the (Web) PKI

• Goals

• Detecting equivocating certificates by monitoring specific domain name

• Detecting suspect CAs/certificates

• An extensive standardization

• Already enforced by Chrome and supported other major browsers

• Many websites and CAs deploy CT, making CT the most important 
development in PKI since X.509

PKI: Certificate Transparency (CT)



• CT Entities

• Loggers: provide public logs of certificates

• CAs send each certificate to loggers, who add the certificate to the log 

• Loggers provide accountability for the public availability of certificates

• Google and few CAs operate loggers

• Monitors: monitor the certificates logged by (many) loggers 

• Detect (suspicious) changes of certificates for domain owners

• Operated by Facebook and few other CAs and companies 

• Auditors: ensure the logger provides exactly the same log to all parties

• Typically implemented and performed by relying parties (browsers)

PKI: Certificate Transparency (CT)



• CT Operations

PKI: Certificate Transparency (CT)

Relying Party

(Browser)

Web Service

Certificate 

Authority

TLS handshake

(Certificate)

CA issues

Certificate
upload

Public key
1 2

Relying Party

(Browser)

Web Service

Certificate 

Authority

TLS handshake

(Certificate with SCT)

CA issues

Certificate

with SCT

upload

Public key
1 4

CT Logger
2

3

Certificate 

submission

Log response

SCT: Signed Certificate 

Timestamp

(time that the certificate was 

added to log, serial number)



• Certificate Transparency (CT)

• Goals

• Detecting equivocating certificates by monitoring specific domain name

• Detecting suspect CAs/certificates

PKI: Certificate Transparency (CT)



• Certificate Transparency (CT)

• Goals

• Detecting equivocating certificates by monitoring specific domain name

PKI: Certificate Transparency (CT)

Domain 

Owner
Monitor

Loggers

Domain(s), $

Monitoring 

Certificate 

changes

Detecting  

Certificate 

changes

Certificate 

changes



CA1’s public key

CA1.e

CA1’s public key

CA1.s

Certificate

CCA1
= SignCARoot.s

(CA1.e)

CARoot’s public key

CARoot.e

Bob.e / Bob.s

CA1.e / CA1.s

CARoot.e / CARoot.s

Certificate

CCA1

Root CA

Public Key Infrastructure (PKI)

X.509



Network Security - Cryptography

• TCP/IP

• DoS Attacks

• DNS

• BGP

• CDN

• Applied Cryptography

• PKI

• TLS/SSL and HTTPS

• DNSSEC (USENIX Security’17)

• RPKI (NDSS’17)

• HTTPS/CDN (IEEE S&P’14)
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