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Network Security — Cryptography

* Applied Cryptography
* PKI
TLS/SSL and HTTPS

DNSSEC (USENIX Security’17)
RPKI (NDSS’17)
HTTPS/CDN (/IEEE S&P’14)
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Cryptography Foundations

* Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

* Confidentiality: only sender, intended receiver should “understand”
message contents

* sender encrypts message
* receiver decrypts message

* Integrity: sender, receiver want to ensure message not altered (in transit,
or afterwards)

e Authentication: sender, receiver want to confirm identity of each other
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Cryptography Foundations

* Ensuring secrecy of the communication between two parties in the presence of
malicious adversaries

 Classical Cryptography
Always assumed that two parties shared some secret information (Key)
* Private-kay or symmetric-key
* “Modern” Cryptography
No pre-shared secret is requited for two parties

* Public-key or asymmetric-key
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Cryptography Foundations
* (Symmetric Key) Encryption

Encrypt (encode) plaintext into ciphertext
* Only legit-recipient can decrypt ciphertext to plaintext

key key

AV plaintext

¢

ciphertext plaintext |
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Cryptography Foundations

* (Symmetric Key) Encryption

Encrypt (encode) plaintext into ciphertext
* Only legit-recipient can decrypt ciphertext to plaintext
Stream Ciphers
Block Ciphers
DES (Data Encryption Standard)
AES (Advanced Encryption Standard)
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Cryptography Foundations

* Correctness Key k
Plaintext Ciphertext
Correctness: m=D(E,(m)) m c=Ey(m)
Key k
Ciphertext Plaintext

¢ m=D,(c)

Key k Key k

Plaintext Vo
phertext :
g - = - Ny
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Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack

Chosen-plaintext attack

* Attacker was able to obtain some cipher text, encrypted using the
same key, corresponding to plaintext of the attacker's choice (an
oracle)

M



Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack
Chosen-plaintext attack

Chosen-ciphertext attack

e Attacker is able to get a party to decrypt certain cipher texts of that
attacker's choice.
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Cryptography Foundations

* Threat Model for Encryption

Describe the assumption on the (computational) capability an attacker
can gain

Ciphertext-only attack
Known-plaintext attack
Chosen-plaintext attack

Chosen-ciphertext attack

Regardless of any prior information the attacker has about the plaintext, the ciphertext
observed by the attacker should leak no additional information about the plaintext.
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Cryptography Foundations

* Threat Model for Encryption
Adversary’s Goal
Recover the secret key
Recover plaintext from ciphertext, without knowing key

Learn partial information about plaintext from the ciphertext

M



Cryptography Foundations

 Authentication

Encryption ensures Confidentiality
What about Integrity and Authentication
* Does Alice send this message?

key

b
Y plaintext

\

ciphertext plaintext |’
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Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
Use shared key & to authenticate messages

m, MACk(m)

M



Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
(m, 1ag) is valid iif Tag = MAC,(m)

M



Cryptography Foundations

* Message Authentication Code (MAC)

Allow a recipient to validate that a message was sent by a key holder
Sender could be any key-holder including recipient
* Specify sender and recipient in the message
Could be re-transmission (replay attack)

* Add time/sequence challenge

m, MAC,(m) X Q
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Cryptography Foundations

 Hash Functions

Hash function i(m) allow verification of message: Integrity

* Any length of message m > fixed length of hash /(m)
Also confidentiality: one-way function

* Hash value /#(m) does not expose m
Collision-resistance

* h(m) # h(m’)

* Pseudo-randomness

* Every hash has collisions: |input| >> |output|

 But hard to find collisions
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Cryptography Foundations

 Hash Functions

Hash function i(m) allow verification of message: Integrity
* Any length of message m > fixed length of hash /(m)
Also confidentiality: one-way function
* Hash value /#(m) does not expose m
Practical hash functions
 MD5: 128-bit output; collisions found in 2004
 SHA-1: 160-bit; theoretical analysis indicates weakness
e SHA-2: 256/512-bit output
* SHA-3: different design than previous SHAs; results of a public competition

M



Cryptography Foundations

 Hash Functions

Hash functions: maps arbitrary length inputs to a fixed length output
* Input: message m (binary strings)
e Output: (short) binary strings n (message digest)

Keyed or unkeyed

m m
k > h h
h; (m) h(m)
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Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem
* How do users share a key in the first place?
* Need to share the key using a secure channel
* Trusted carrier/face-to-face meeting

* Key Distribution Center

M



Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem

Key management problem
* When each pair of users might need to communicate securely
* O(N?) keys overall

M



Public Key Cryptography

* Private-key cryptography allows two users who share a secret key to establish a
secure channel

* The need to share this secret key incurs drawbacks

Key distribution problem
Key management problem
Lack of “open systems”

e Two users who have no prior relationship want to communicate securely

M



Public Key Cryptography

* New direction: can encryption key be public?
Anyone can encrypt the message using public encryption key
Decryption key will be different (and private)
* only the key-holder can decrypt it

Each entity, Alice, generate a key pair (£, S).
P 1s the public key and S is the secret private key
Requirement: 1t must be infeasible for an adversary recovering S from P

Example: S = (p, g) where p, g are randomly-selected large prime numbers,
and P = pg

M



Public Key Cryptography

* New direction: can encryption key be public?
Anyone can encrypt the message using public encryption key
Decryption key will be different (and private)
* only the key-holder can decrypt it

Encryption Key e (e.d) Decryption Key d
(public) rivate)
e d

Ciphertext Plaintext
c=E (m) m=D,(E,(m))

Plaintext
m

M



Public Key Cryptography

* Public Key Cryptosystem
Encryption: Public key encrypts, private key decrypts
Also Authentication: Digital Signature
* Sign with private key, validate with public key

Private signing (s.v) Public validation

key S/ w
Message m, 6=S,(m) m if V., (m, 6)=0OK
Error otherwise

M



Public Key Cryptography

* Public Key Cryptosystem
Encryption: Public key encrypts, private key decrypts
Also Authentication: Digital Signature
* Sign with private key, validate with public key
Public key cryptosystem also has drawbacks: significantly expensive and slow
* Public key cryptosystem: exchange a shared, private key
* Private key encryption: establish a secure communication channel

M



Public Key Cryptography

* Key-Exchange Protocol
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

M
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Public Key Cryptography

* Key-Exchange Protocol
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

A physical key exchange problem

* Alice has: f *w W
* Bob has
Q




Public Key Cryptography

* Key-Exchange Protocol y

) Alice

M



Public Key Cryptography

* Key-Exchange Protocol = y
J Alice

AB - ﬁﬁﬂ\
Put key in box N A

Lock and send it
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Public Key Cryptography

* Key-Exchange Protocol = y
J Alice

¥
Put key in box N A

Lock and send it
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Public Key Cryptography

* Key-Exchange Protocol = 0 y
) Alice

Put key in box
Lock and send it

lock it too and
send back

M



Public Key Cryptography

* Key-Exchange Protocol = y 50

J Alice Bob

Put key in box
Lock and send it

Remove key A m\

send back

lock it too and
send back

M



M

Public Key Cryptography

 Key-Exchange Protocol &
J Alice

Put key in box
Lock and send it

lock it too and
send back

Remove key B
obtain key AB




Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

Security goal: even after observing the messages, the shared key & should
be undisguisable from a uniform key

)



Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)
e Secure against eavesdropping
* No prior shared secrets

Security goal: even after observing the messages, the shared key & should
be undisguisable from a uniform key

Discrete-logarithm problem
* Given prime p and g, and X
* It would be easy to have Y = p* mod ¢
e Butitis very hard to compute X when giving Y

M



Public Key Cryptography

 Diffie-Hellman key-exchange
Alice and Bob want to agree on secret (key)

* Alice and Bob agree on a random safe prime p (modulo) and a base g
(which is a primitive root modulo p)

* Alice chooses a secret key a — public key K ,= g? mod p
* Bob chooses a secret key b — public key K= g” mod p
* Alice and Bob set up a shared key

(g®)* mod p = (g%)® mod p= g*° mod p
Only a and b are keeping secret

M



Public Key Cryptography

* Diffie-Hellman key-exchange

#i

3

ﬁ) A G (group genenation) -> p, g k “
Alice Bob
K,=g"modp Kp= g mod p
K 5= g" mod p K 5= g" mod p

Does Diffie-Hellman secure the communication channel?

M



Public Key Cryptography

* Diffie-Hellman key-exchange

5

J A G (group genenation) -> p, g X “
Alice Bob
K,=g"modp Kp= g mod p
K7
K= g| modp
K 5= g*" mod p

K z= gTb mod p
Does Diffie-Hellman secure the communication channel?
Authenticate the public key

M



Public Key Cryptography

* (Public) Key Management and Distribution
Encryption: Public key encrypts, private key decrypts
m=D Private Key (E Public Key (I’I’l))

Assume the parties are able to obtain the correct copies of (each other’s)
public key

M



Public Key Cryptography

* (Public) Key Management and Distribution
Encryption: Public key encrypts, private key decrypts

m :DPrivate_Key ( EPublic_Key (m))
Distributing public keys
* Point-to-point delivery over trusted channels
* Direct access to a trusted file
* Use an online trusted services

e Offline certificates that are authorizable

Public keys are transported in certificates issued by a certificate authority
(CA)

M
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Public Key Cryptography

e Public Key Infrastructure (PKI)
Use signatures for secure key distribution

 Certificates: A digital document cryptographically binds an entity’s
identity and its public key, allowing other entities to gain trust of the
authenticity of the public key

* Certificate Authority (CA): issue and manage certificates of entities

* PKI: A comprehensive framework that combines cryptographic
techniques, protocols, policies, and management ecosystem to support
secure and reliable use of public keys



Public Key Cryptography

e Public Key Infrastructure (PKI)
Use signatures for secure key distribution
* Certificate Authority (CA)

e Public key Pe
* Private key Ps

Bob asks the CA to sign the binding (Bob, Py, ,)
* Certey_,pop = Sighcy ((Bob, Py )
* CA must verify Bob’s identity out of band

M



Public Key Cryptography

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, ,)
* Certcy_pop = Sighcy ((Bob, Py, )
* CA must verify Bob’s identity out of band

M
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Public Key Cryptography

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, .)
* Certey_,pop = Sighcy ((Bob, Py )

e CA must verify Bob’s identity out of band
Alice obtains and wants to verify (Bob, Py, .)

* Alice obtains Py, .

* Alice requires Certq,_ 5,5

* Alice verifies that Validate ., ,(Bob, Py, ., Certy, .p,1)
Validate -, (Certoy g,
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Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

e

e
7
e
e

CA’s public key ////

Al CAe -~ Bob’s public key 1 '|Certificate
ee 7 Bob.e e
(relying party) e o
P A//// Certificate Cpg: .
Cp = Signc a.s(bob.com, Bob.e, . . .) ( Subject

CA.e / CA.s

/{Certiﬁcate Authorit

y
(Aka CA or Issuer) }

)

ValidateCA_e(CB)

L(e.g, website bob.com))}

Bob.e / Bob.s



Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Bob asks the CA to sign the binding (Bob, Py, .)
* Certey_,pop = Sighcy ((Bob, Py )

e CA must verify Bob’s identity out of band
Alice obtains and wants to verify (Bob, Py, .)

* Alice obtains Cert 4 _,z,s

* Alice verifies that Validate, ,(Bob, Py, ., Certoy 5,1
As long as ...

e CAis trustworthy and CA’s key pair has not been compromised

M
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Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Alice
(relying party)

p -
-
-
-
Vs

7~
7
e
7
e
e

CA’s public key ////

) CA.e//// Bob’s public key i '|Certificate
¢ 7 Bob.e L_CB
Certificate Cp: LY
Cp = Signc a.s(bob.com, Bob.e, . . .) ( Subject

CA.e / CA.s

/{Certiﬁcate Authorit

y
(Aka CA or Issuer) }

)

L(e.g, website bob.com))}

Bob.e / Bob.s



Public Key Infrastructure (PKI)

e Public Key Infrastructure (PKI)

Certificate CA,e/ CA,s
CAse / CAys Certificate Authority ——_—_—(_j —(ié_l—_—_ﬁfg_ﬁ_c—ifﬁ_(—(_jé —1_'—e_) ——- Certificate Authority
(Aka CA or Issuer) CA/’s public key _~ (Aka CA or Issuer)

. s CA,.s //// ,
CAy’s public key | -7 o
CAj.e I CA/’s public key //// : :

: | CApe -~ Bob’s public key 1 '|Certificate

AllCe | 7 Certificate Bob.e : ! Cp
(relying party]? e Coa, | |
| -7 L
P i/,// Certificate Cp: L
Cp = Signc a.s(bob.com, Bob.e, . . .) ( Subject

Validateca; o(Ceay)

{(e.g, website bob.com))

)

Validatecy .(Cp) Bob.e / Bob.s




Public Key Infrastructure (PKI)

* Root-of-Trust
Alice will only need to securely obtain a small number of Public key CA.e

 Ensure secure distribution for few initial CA4.e
Root CAs

* Root CAs issues Certificate for intermediate CA Cert,y; c4.5-cu

Valida teRoot_CA. e(Cer tRoot_CA. s— CA)

* Intermediate CAs issue Certificate for subject (website)
ValidateCA.e(CertCA.SHBob)
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Public Key Infrastructure (PKI)

 Root-of-Trust

CA,.e / CA,.s | Certificate Authority |-
(Aka CA or Issuer)

CAy’s public key f
CAg.e

|
|

|

|

Alice I
(relying party)

>

Ve

I
I
* 7
e
e

7

Certificate
Cea i Signca,(CAs.e)

CA/’s public key

CAJ.S

7

CA;’s public key Rl

7

7

e

CA1 e //
- Certificate
-7 CCA,

Certificate Cp:

Cp = Signc a.s(bob.com, Bob.e, . .

CAl.e / CAZ.S

-+ Certificate Authority
(Aka CA or Issuer)

Bob’s public key i '|Certificate
Bob.e | : Chp
|
) ( Subject

)

Validateca; o(Ceay)
Validatecy .(Cp)

{(e.g, website bob.com))

Bob.e / Bob.s




Public Key Infrastructure (PKI)

 Root-of-Trust
Root CA

Certificate

Ccy = Sign (CA,.e)
CAp,...c / CAp,.,.s| Certificate Authority __ Ay P CARgorst

CAl.e / CAZ.S

(Aka CA or Issuer) N CA/’s public key

CApg,o:s public key

CAI.S

7

Certificate Authority
(Aka CA or Issuer)

Bob’s public key
Bob.e

- — — - — = = - — = - = o

Certificate
Cp

|

CApyope | CA/’s public key////

. | CA,e -~
.Allce | /// Certificate
(relying pa,rty? //// Cea,
I 7
P v /// Certificate Cpy:
éeec -

Validateca; o(Ceay)
Validatecy .(Cp)

Cp = Signc a.s(bob.com, Bob.e, . . .) ( Subject
L(e.g, website bob.com))

Bob.e / Bob.s




Public Key Infrastructure (PKI)

( Root CA

I (Aka CA or Issuer) “

N P
CApg,ors public key: -
CApyor€ | CA,’s public key _~
. : CAl.e -7
Alice ﬂ “|Certificate

Certificate

' Cea = Signca,, (CAre)
CApyore / CAROE)t”S Certificate Authority __ Ay T CARoors T

Cea,

Certificate Cp:
Cp = Signga.s(bob.com, Bob.e, . . .) ( Subject

Certificate Authority
(Aka CA or Issuer)

Bob’s public key
Bob.e

- - — - — = = = - — - = o

Certificate
Cp

@& Secure | https://

L(e.g, website bob.com))

Bob.e / Bob.s



Public Key Infrastructure (PKI)

* Dealing with CA failures
Certificates are all about Trust

Certey_pop = Signcy ((Bob, Py, )

M



Public Key Infrastructure (PKI)

* Dealing with CA failures

Certificates are all about Trust

CertCA—)BOb - SignCA.S(BOb’ PBob.J

Equivocating or misleading (domain) name (Rogue Certificates)
* Intentionally signed and issued by malicious CAs Certificates
e Squatting misleading names

DROPPING THE DOT SWITCHING TWO
AFTER M I DROPPING ONE LETTER I CETTERS l
wwwaa.com apple.om faecbook.com
DOUBLING CHARACTERS USING SIMILAR PRESSING A WRONG
| LOOKING CHARACTERS KEY
@ Secure | httpS-/ / twiitter.com . google.com (I vs ) . costko.com .

M



TLS and SSL

e Securing the Web in practice
SSL: Secure Socket Layer (Netscape, mid-"90s)
TLS: Transport Layer Security: an IEEE version of SSL
* For standardizing SSL
* TLS 1.0 (1999)
* TLS 1.2 (2008, current)
* TLS 1.3 (2018, adopting)

* Used by every web browser for HTTPS connections

M



TLS and SSL

e Securing the Web in practice

SSL: Secure Socket Layer (Netscape, mid-"90s)

TLS: Transport Layer Security

TLS Handshake HTTPS HTTP
TLS record
TCP sockets API
TCP
IP

)




TLS and SSL

e TLS/SSL Operations
Handshake layer
 Server/client authentication, cipher suite negotiation, key exchange
Record layer

e Secure communications between client and server using exchanged
session keys

Server
SSL :
Syn +/Ack\ /Han dsak _: Fin H\Ack
Client - S5k >
Teardown

M



TLS and SSL

* TLS/SSL Operations 1.(_) https://bank.com

- HTTPS

6. Display:
-- Page

-- URL

-- Padlock

)

2a. Resolve:
bank.com — ?

N
>

<
<«

2b.... > 1.2.34

3. TCP handshake

v

3a. TCP SYN
- 3b. TCP SYN+ACK

bank.com
1.2.3.4

4. TLS handshake

4a. Hello >

> 4b. Pe, Cert=S-4(P.e, bank.com)
4c. E, (Premaster key) >

5. TLS session

5a. Get bank.com/index.html >
s 5b. <html>...(login form)

5c. Post (userid/pw) >




TLS and SSL

e TLS/SSL Operations
- HTTPS

M
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TLS and SSL

* Handshake Layer 4a. Hello
y 4b. Pe, Cert=Sc,(Pe, bank.com)

4. TLS handshake

4c. £, (Premaster key)

I
L

n

2

Client C Server S (s.com)
/v Client hello: client version (v¢), client random (r¢) >
K
»
;\ '\ <«————— Server hello: server random (rg) and certificate: Sc 4 (S.e,s.com,...)
A Client key exchange: Eg .(kpr); .

Client finish: Ey_ (rg)

Server finish: Ey(r¢)

* roand rg: Nonces for protecting against replay
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TLS and SSL

* Handshake Layer 4a. Hello
y 4b. Pe, Cert=Sc,(Pe, bank.com)

4. TLS handshake

4c. £, (Premaster key)

I
L

n

2

Client C Server S (s.com)
/v Client hello: client version (v¢), client random (r¢) >
K
»
;\ '\ <«————— Server hello: server random (rg) and certificate: Sc 4 (S.e,s.com,...)
A Client key exchange: Eg .(kpr); .

Client finish: Ey_ (rg)

Server finish: Ey(r¢)

* k- and kg: derived from the master key k),




TLS and SSL

 Handshake Layer

Client C Server S (s.com)
/ Client hello: client version (v¢), client random (r¢) >
T
!}"’ < Server hello: server random (rg) and certificate: Sc 4 s(S.e,s.com,...)
9 Client key exchange: Fg .(kpr);
- Client finish: Ey . (rs) >
- Server finish: Ey (r¢)

)
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TLS and SSL

* Cipher-suite negotiation (SSLv2)

Client

79

q s
»

,@\’

'V \

Client hello: client random (r¢),

A

Server

cipher-suites=RC4_128 MD5, RC4_40 MD5, DES 64 MD5

Server hello: server random (rg), certificate: Sca . s(S.e,s.com,..

and cipher-suites=RC4_128 MD5, RC4_40_MD5

)

-
!

Client key exchange: RC4_128 MD5, Eg . (kpr);

Client finish: Ey (rs)

A

Server finish: Ej (r¢)

Y

* Vulnerable to downgrade attack
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TLS and SSL

* Cipher-suite negotiation (SSLv2)

Client

q

)

54

G
4

&

Client hello: client random (r¢),
cipher-suites=RC4_128 MD5, RC4_40_MD5

MitM

Client hello: client random (r¢),
cipher-suites=RC4_40_MD5

Server

A

Server hello: server random (rg), certificate: Sca s(S.e,s.com,...)
and cipher-suites=RC4_40_MD5

-
!

Client key exchange (RC4_40_MD5): Eg .(kar);
Client finish: Ey, (rs)

Y

A

Server finish: Ey . (r¢), Exg(ID)

* Vulnerable to downgrade attack
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TLS and SSL

* Cipher-suite negotiation (SSLv2)

T8
‘ B4

)

Lo

-

Client

Client hello: client random (r¢),
cipher-suites=RC4_128 MD5, RC4_40_MD5

MitM

Client hello: client random (r¢),
cipher-suites=RC4_40_MD5

Server

A

Server hello: server random (rg), certificate: Sca s(S.e,s.com,...)
and cipher-suites=RC4_40_MD5

-
!

-

Client key exchange (RC4_40_MD5): Eg .(kar);
Client finish: Ey, (rs)

Y

A

Server finish: Ey . (r¢), Exg(ID)

the finish message

e SSLv3 improvement: authenticate the handshake message with




TLS and SSL

* Record layer
Secure communications between client and server using established keys

Assume reliable underlying communication (TCP)

Message sent by the application, e.g., HTTP request
<16KB <16KB <16KB

Fragmentation | Message sent by t he application, e.g. || HTTP request

MAC
Encrypt

Header
O



PKI: Revoking certificates

* Reasons for revoking (i.e., invalidating) certificate
Key compromise
CA compromise
Affiliation changed - Object names or attribute

Cessation — no longer needed

* How to inform replying parties?
Wait for end of validity period (short-lived certificated)
Distribute Certificate Revocation List
Online status check - Online Certificate Status Protocol

)



PKI: Revoking certificates

* Certificate Revocation List (CRL) X.509 CRL
A list of certificates that has been / [Version of CRL format
revoked before their expiration dates Signature Algorithm Object |dentifier (OID)
] CRL Issuer Distinguished Name (DN)
Issued and signed by a CA = | | This update (date/time)
Updated at regular intervals £ | [Next update (date/time) - optional
§D< Subject (user) Distinguished Name (DN)
“ | ICRL | Certificate | Revocation | CRL entry
Before relying on a certificate, an il
- CRL Entry... | Serial... | Date...| extensi
entity needs to check that the W
certificate is not included in the latest | |CRL Extensions
CRLs Signature on the above fields

)
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PKI: Revoking certificates

* Revocation is hard
CRLs contain all revoked certificates — huge!
CRLs are not immediate
 Affiliation changed - Object names or attribute

* Frequent CRLs — more overhead

* Solutions
Distributed CRLs - split certificates to several CRLs
Delta CRLs — only new revocation since last “base” CRL
Short validity for certificates — no need to revoke them



PKI: Revoking certificates

e Online Certificate Status Protocol (OCSP)
Most browsers don’t use CRLs
* Efficiency
* Frequent CRLs — more overhead

 OCSP
Check validity of certificates as needed

)



PKI: Revoking certificates

e Online Certificate Status Protocol (OCSP)
Most browsers don’t use CRLs

* Efficiency
* Frequent CRLs — more overhead
* OCSP OCSP Client OCSP Responder
(e.g., relying party) (CA or trusted OCSP server)

OCSP request:
version, {CertID1,...} [, signature] [, extensions]

Y

OCSP response:
ResponseStatus, producedAt, responses, signature

A

)



PKI: Certificate Transparency (CT)

 Why and How CAs fail
(Root) CAs trusted in browsers
Every CA can certify any domain (name)
Bad certificates
* Equivocation: rogue certificates
* Misleading certificates (e.g., squatting names)

* How to improve defense against bad CAs/certificates

M



PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)

A proposal originating from Google, for improving the transparency and
security of the (Web) PKI

Goals
e Detecting equivocating certificates by monitoring specific domain name
* Detecting suspect CAs/certificates

An extensive standardization
* Already enforced by Chrome and supported other major browsers

* Many websites and CAs deploy CT, making CT the most important
development in PKI since X.509

M



M

PKI: Certificate Transparency (CT)

* CT Entities

Loggers: provide public logs of certificates
* CAs send each certificate to loggers, who add the certificate to the log
* Loggers provide accountability for the public availability of certificates
* Google and few CAs operate loggers

Monitors: monitor the certificates logged by (many) loggers
* Detect (suspicious) changes of certificates for domain owners
* Operated by Facebook and few other CAs and companies

Auditors: ensure the logger provides exactly the same log to all parties
e Typically implemented and performed by relying parties (browsers)



PKI: Certificate Transparency (CT)

* CT Operations

Certificate
Authority

upload

CA 1ssues
Public key

, Certificate
I 1
I v
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PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)
Goals
* Detecting equivocating certificates by monitoring specific domain name
* Detecting suspect CAs/certificates

M



PKI: Certificate Transparency (CT)

* Certificate Transparency (CT)
Goals

* Detecting equivocating certificates by monitoring specific domain name
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Public Key Infrastructure (PKI)
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M

Network Security - Cryptography

TCP/IP

DoS Attacks
DNS

BGP

CDN

Applied Cryptography
PKI
TLS/SSL and HTTPS

DNSSEC (USENIX Security’17)
RPKI (NDSS’17)
HTTPS/CDN (/IEEE S&P’14)



Major Reference

* Amir Herzberg, Foundations of Cybersecurity, Volume I: An Applied Introduction to Cryptography,
2021 (Draft).

e Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography, 2nd Edition.

)



CS 772/872: Advanced
Computer and Network Security

Fall 2025

Course Link:
https://[shhaos.github.io/courses/CS872/netsec-fall25.htmi
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