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• Safe web browsing

• Users should be able to visit a variety of web sites, without incurring 
harm: 

• No stolen information (without user’s permission) 

• Site A cannot compromise sessions at Site B

• Support secure web applications 

• Applications delivered over the web should have the same security 
properties as stand-alone applications 

Goals of Web Security



• Web browsers 

• Responsible for securely confining Web content presented by visited websites 

• Web applications 

• Online merchants, banks, blogs, collaboration suites (Google Apps), chatbots 
(ChatGPT, Character AI) ... 

• Mix of server-side and client-side code 

• Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server 

• Client-side code written in JavaScript... runs in the Web browser 

• Many potential bugs: XSS, CSRF, SQL injection 

Two Sides of Web Security



• Web attacker 

• Control a malicious service: attacker.com

• Can obtain valid SSL/TLS certificate for attacker.com

• User visits attacker.com (how?)

• Or: runs attacker’s “Facebook” website or app, etc.

• Network attacker
• Passive: Wireless eavesdropper

• Active: Evil router, DNS poisoning

Threat Model of Web Security

• Malware attacker
• Attackers bypass browser security mechanisms (e.g., isolation) and run 

separately under control of OS



• Used to request and return data

• Methods: GET, POST, HEAD, ... 

• Stateless request/response protocol 

• Each request is independent of previous requests 

• Statelessness has a significant impact on design and implementation 
of applications 

• URL: Global identifiers of network-retrievable documents 

HTTP

http://odu.edu:80/class?name=cs772#coursework



HTTP Request



HTTP Response

HTTP version



• Document Object Model

• Object-oriented interface used to read 
and write docs

• Web page in HTML is structured data

• DOM provides representation of this 
hierarchy

• Browser parses a web document, creates
a collection of objects that define how
the page should be displayed

DOM



• History

• Developed by Netscape Navigator2 browser

• Later standardized for browser compatibility 

• Related to Java in name only

• Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server 

• “Java is to JavaScript as car is to carpet” 

• Language executed by the Web browser

• Scripts are embedded in webpages

• Can run before HTML is loaded and before page is viewed

• Use to implement “active” webpages and Web applications

• A potentially malicious webpage gets to execute some code on user’s machine

JavaScript



• Port scanning behind firewall

• Request images from internal IP addresses: <img src=“192.168.0.4:8080”/> 

• Use timeout/onError to determine success/failure 

• Fingerprint webapps using known document names

JavaScript



• What are Cookies used for?

• Authentication
• The cookie proves to the website that the client previously authenticated 

correctly 

• Personalization 
• Helps the website recognize the user from a previous visit 

• Tracking --> Privacy concerns!
• Follow the user from site to site

• learn user’s browsing behavior, preferences, and so on 

• HTTP is a stateless protocol; cookie add state

Cookies



• Attributes

• Expires / Max-Age - Specifies expiration date; if no date, then lasts for 
session 

• Path - Scope the "Cookie" header to a particular request path prefix 

• e.g., Path=/docs will match /docs and /docs/Web/ 

• Domain - Specifies which server can receive the cookie

• Allows the cookie to be scoped to a domain broader than the domain 
that returned the Set-Cookie header (e.g., login.odu.edu could set a 
cookie for odu.edu)

• SameSite – Control cross-site requests

Cookies



Cookies

Sending cookies with state information over unencrypted HTTP is a very bad idea



• Secure Cookies

• A secure cookie is encrypted when transmitting from client to server 

• Provides confidentiality against network attacker

• Browser will only send cookie back over HTTPS 

• But does not stop most other risks of cross-site bugs (XSS attacks)

• Mix Content: HTTP and HTTPS

• Page loads over HTTPS, but has HTTP content

• <script src=http://www.site.com/script.js> </script> 

• Better way to include content: <script src=//www.site.com/script.js> </script>

• Best Practice: enforce HTTPS for entire website

Cookies



Cookies



• Frame and iFrame

• Window may contain frames from different sources 

• Frame: rigid division as part of frame set 

• iFrame: floating inline frame 

• iFrame example 

• Why use frames? 

• Delegate screen area to content from another source 

• Browser provides isolation based on frames 

• Parent page may work even if frame is broken

Isolation



• Policy Goals

• Safe to visit an evil website

• Safe to visit two pages at the same time

• Address bar distinguishes them

• Allow safe delegation

Isolation



• Components of Browser Security Model

• Frame-Frame relationships

• canScript(A,B) - Can Frame A execute a script that manipulates 
arbitrary/nontrivial DOM elements of Frame B?

• canNavigate(A,B) - Can Frame A change the origin of content for Frame B?

• Frame-principal relationships

• readCookie(A,S), writeCookie(A,S) - Can Frame A read/write cookies from 
site S?

Isolation



• Browser Security Mechanism

• Each frame of a page has an origin

• Origin = protocol://host:port

• Frame can access its own origin

• Network access, Read/write 
DOM, Storage (cookies)

• Frame cannot access data 

associated with a different origin

Isolation

A A

B

B

A



• Browser Sandbox

• Goal: safely execute JavaScript code provided by a 

website 

• No direct file access, limited access to OS, network, 
browser data, content that came from other websites

Isolation

• User can grant privileges to signed scripts 
• UniversalBrowserRead/Write, UniversalFileRead, UniversalSendMail



• Browser Sandbox

• Chrome Security Architecture 

• Browser ("kernel")

• Full privileges (file system, networking)

• Rendering engine

• Up to 20 processes 

• Sandboxed

• One process per plugin

• Full privileges of browser

Isolation



• Browser Sandbox

• Chrome Security Architecture 

• Browser ("kernel")

• Full privileges (file system, networking)

• Rendering engine

• Up to 20 processes 

• Sandboxed

• One process per plugin

• Full privileges of browser

Isolation

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md



• Browser Sandbox

• Goal: safely execute JavaScript code provided by a 

website 

• No direct file access, limited access to OS, network, 
browser data, content that came from other websites

Isolation

• Frame-Frame relationships - canScript(A,B) / canNavigate(A,B)

• Same origin policy

• Can only access properties of documents and windows from the same domain, 
protocol, and port 



Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources 
should not be allowed to interfere with each other

• Should site A be able to link to site B? 

• Should site A be able to embed site B? 

• Should site A be able to embed site B and modify its contents? 

• Should site A be able to submit a form to site B? 

• Should site A be able to embed images from site B? 

• Should site A be able to embed scripts from site B? 

• Should site A be able to read data from site B?



Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources 
should not be allowed to interfere with each other

• Same Origin Policy for DOM 

• Same Origin Policy for Cookies



Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources 
should not be allowed to interfere with each other

• https://example.com/a/→https://example.com/b/ 

• https://example.com/a/→https://www.example.com/a/ 

• https://example.com/→http://example.com/ 

• https://example.com/→https://example.com:81/ 

• https://example.com/→https://example.com:80/



• Same Origin Policy

• Problems

• Sometimes policy is too narrow: difficult to get login.odu.edu and 
portal.odu.edu to exchange data

• Sometime policy is too broad: cannot isolation https://odu.edu/cs795 and 
https://odu.edu/cs495 

• Solution (?)

• document.domain: need a way around Same Origin Policy to allow two 
different origins to communicate

• Both origins must explicitly opt-in this feature

Isolation

https://odu.edu/cs795
https://odu.edu/cs495


• Same Origin Policy

Isolation

Source: Feross Aboukhadijeh 



• Same Origin Policy

• document.domain is not a good idea

• In order for login.odu.edu and portal.odu.edu can exchange data

document.domain = ‘odu.edu’

• Anyone on odu.edu can join the communication

• “Modern” Solution

• postMessage API: Secure cross-origin communications between cooperating 
origins 

• Send strings and arbitrarily complicated data cross-origin 

Isolation



• Same Origin Policy

Isolation

Source: https://html.spec.whatwg.org/multipage/web-messaging.html



• Same Origin Policy

• Request images from internal IP addresses: <img src=“192.168.0.4:8080”/> 

• Use timeout/onError to determine success/failure 

• Fingerprint webapps using known image names

Isolation



• Same Origin Policy

• Same Origin Policy exceptions: Embedded static resources can come from 

other origin

• Images

• Scripts (Buttons, ads, tracking scripts)

• Styles (e.g., Fonts)

Isolation



Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources 
should not be allowed to interfere with each other

• Should site A be able to link to site B? 

• Should site A be able to embed site B? 

• Should site A be able to embed site B and modify its contents? 

• Should site A be able to submit a form to site B? 

• Should site A be able to embed images from site B? 

• Should site A be able to embed scripts from site B? 

• Should site A be able to read data from site B?
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• SQL Injection

• Browser sends malicious input to server

• Bad input checking leads to malicious SQL query

• CSRF – Cross-Site Request Forgery

• Bad web site sends browser request to good web site, using credentials of an 
innocent victim

• XSS – Cross-Site Scripting

• Bad web site sends innocent victim a script that steals information from an 
honest web site

Web Vulnerabilities and Attacks



• SQL Injection

• Insertion or Injection of a SQL query via the input data from the client to 
the application (to execute malicious SQL statements)
• read sensitive data from the database

• modify database data 

• execute administration operations on the database

• Very common in old but prevalent PHP/ASP applications

• Improperly string escaping

• apostrophe ’: incorrectly interpret delimit strings

• pair of hyphens (--): specifies to most database servers that the remainder 
of the statement is to be treated as a comment and not executed 

SQL Injection



SQL Injection

Web

Server

Web

Browser

(Client)

DB

Enter

Username

&

Password

SELECT * FROM Users

WHERE user='me'

AND pwd='123'



SQL Injection

$login = $_POST['login'];

$pass = $_POST['password’];

$sql = "SELECT id FROM users 

WHERE username = '$login'

AND password = '$password'”;  

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}



SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

• Normal Input



SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = 'me' AND pwd = '123'”

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

• Normal Input



SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123’

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = 'me' AND pwd = '123’'”

$rs = $db->executeQuery($sql); //SQL Syntax Error

if $rs.count > 0 {

// success

}

• Bad Input



SQL Injection

$u = $_POST['login’]; // me’--

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = 'me’-- AND pwd = '123’'”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

rest of the SQL query will be ignoredAdmin



SQL Injection

$u = $_POST['login’]; // ‘or 1=1 --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = ’’or 1=1 -- AND pwd = '123’'”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

No Username Needed



SQL Injection

$u = $_POST['login’]; // ‘; DROP TABLE [users] --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] –- AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Causing Damage



SQL Injection

$u = $_POST['login’]; // ‘; DROP TABLE [users] --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] –- AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Causing Damage



SQL Injection

$u = $_POST['login’]; // ‘; exec xp_cmdshell ‘net user add usr pwd’ --
$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;  
//   "SELECT id FROM users WHERE uid = ’’; exec xp_cmdshell ‘net user 

add usr pwd’ --  AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Run arbitrary system commands 
in Microsoft SQL server



• Preventing SQL Injection

• Never trust user input

• There are tools for safely passing user input to Database

• Parameterized SQL (Prepared SQL)

• ORM (Object Relational Mapper)

SQL Injection



• Preventing SQL Injection

• Parameterized SQL

• Build SQL queries by properly escaping arguments: sending queries 
and arguments separately to server

SQL Injection

sql = “INSERT INTO users(name, email) VALUES(?,?)”

cursor.execute(sql, [‘Shuai Hao’, ‘shao@odu.edu’])

sql = "SELECT * FROM users WHERE email = ?" 

cursor.execute(sql, [‘shao@odu.edu'])



• Preventing SQL Injection

• Object Relational Mappers (ORM)

• ORM provide an interface between native objects and relational 
databases

SQL Injection

class User(DBObject):

  __id__ = Column(Integer, primary_key=True)

  name  = Column(String(255))

  email  = Column(String(255), unique=True)

if __name__ == "__main__":

  users = User.query(email=‘shao@odu.edu').all()

  session.add(User(email=‘haos@cs.odu.edu', name=Shuai Hao'))

  session.commit()



•

•

•

• CSRF – Cross-site request forgery

• Bad web site sends browser request to good web site, using credentials of an 
innocent victim

•

•

Vulnerabilities



• Recall: cookies

Cross-Site Request Forgery (CSRF)



• Basic Attack Scenario

Attack Server

Victim Server 
Victim client

Cross-Site Request Forgery (CSRF)



• CSRF Example

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2EIn a CSRF attack, a user is 

tricked into submitting an 

unintended web request to a 

website



• Preventing CSRF Attacks

• Cookies do not indicate whether an authorized application submitted 
request since they’re included in every (in-scope) request

• Referer Validation

• Secret Token Validation

• SameSite Cookies

Cross-Site Request Forgery (CSRF)



• Preventing CSRF Attacks

• Referer Validation

• The Referer request header contains the URL of the previous web 
page from which a link to the currently requested page was followed 

• allow servers to identify where people are visiting from

Cross-Site Request Forgery (CSRF)



• Preventing CSRF Attacks

• Secret Token Validation

• bank.com includes a secret value in every form that the server can 
validate

Cross-Site Request Forgery (CSRF)

<form action=“https://bank.com/transfer" method="post">
<input  type="hidden" name="csrf_token" 

value=“434ec7e838ec3167ef5">

<input  type=“text" name="to">
<input  type=“text" name=“amount”>

<button type="submit">Transfer!</button>

</form>



• CSRF Example

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2EIn a CSRF attack, a user is 

tricked into submitting an 

unintended web request to a 

website



• Preventing CSRF Attacks

• SameSite Cookies: Cookie option that prevents browser from sending a cookie 
along with cross-site requests

• cookie will only be sent if the site for the cookie matches the site currently 
shown in the browser's URL bar.

• Strict Mode: Never send cookie in any cross-site browsing context, even 
when following a regular link

• Lax Mode.: Session cookie is allowed when following a regular link but 
blocks it in CSRF-prone request methods (e.g. POST)

Cross-Site Request Forgery (CSRF)



•

•

•

•

•

• XSS – Cross-site scripting

• Bad web site sends innocent victim a script that steals information from an 
honest web site

Vulnerabilities



• Cross-site Scripting

• Attack occurs when application takes untrusted data and sends it to a 
web browser without proper validation or sanitization

Cross-Site Scripting (XSS)



• Basic Attack Scenario: Reflected XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server 
Victim client



Cross-Site Scripting (XSS)

• Normal Request



Cross-Site Scripting (XSS)

• Normal Request



Cross-Site Scripting (XSS)

• Embedded Script



Cross-Site Scripting (XSS)

• Embedded Script



• Types of XSS

• An XSS vulnerability is present when an attacker can inject scripting code 
into pages generated by a web application.

• Reflected XSS: The attack script is reflected back to the user as part of 
a page from the victim site

• Stored XSS: The attacker stores the malicious code in a resource 
managed by the web application, such as a database

• DOM-based XSS

Cross-Site Scripting (XSS)



• Basic Attack Scenario: Reflected XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server 
Victim client



• Stored XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server 
Victim client

Inject malicious 
script

1



• Reflected XSS:

• Attackers contacted PayPal users via email and fooled them into accessing 
a URL hosted on the legitimate PayPal website

• Injected code redirected PayPal visitors to a page warning users their 
accounts had been compromised

• Victims were then redirected to a phishing site and prompted to enter 
sensitive financial data

Cross-Site Scripting (XSS)



• Stored XSS: MySpace.com (Samy worm)

• MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick, <a href=javascript://>

• But missed one. One can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)’)”>

• With such JavaScript hacking

• Samy worm infects anyone who visits an infected MySpace page    
and adds Samy as a friend

• Samy had millions of friends within 24 hours

Cross-Site Scripting (XSS)



• Why is XSS so prevalent and hard to defend?

• Dynamic web sites incorporate user content in HTML pages (e.g., 
comments/review sections)

• Websites host uploaded user documents

• HTML documents can contain arbitrary JavaScript code

• Non-HTML documents may be content-sniffed as HTML by browsers

• Insecure JavaScript programs may directly execute code that comes from 

external parties

Cross-Site Scripting (XSS)



• Filtering Malicious Tags

• For a long time, the only way to prevent XSS attacks was to try to filter 
out malicious content

• Validate all headers, cookies, query strings, form fields, and hidden fields 
(i.e., all parameters) against a rigorous specification of what is allowed

• Signature-/rule-based policies are difficult to maintain and are likely to be 
incomplete

Cross-Site Scripting (XSS)



• Filtering is Hard

• Filter Action: filter out <script

• Attempt 1: <script src= "…">
• src="…"

• Attempt 2: <scr<scriptipt src="...”

• <script src="...">

• Filters can't catch persistent XSS attacks (stored XSS) in which the server 
saves attacker-injected data

Cross-Site Scripting (XSS)



• XSS Defense

• “httponly” cookies

• A server can tell a browser that client-side JavaScript should not be able 
to access a cookie. 

• Server adds the ”httponly" token to a "Set‐Cookie" HTTP head value.

• Only a partial defense (attacker can still issue requests that contain a 
user's cookies (CSRF).

• Privilege separation

• Use a separate domain for untrusted content

• Google stores untrusted content in googleusercontent.com (e.g., 
cached copies of pages, Gmail attachments).

Cross-Site Scripting (XSS)



• XSS Defense

• Content Security Policy (CSP)

• Allows a web server to tell the browser which kinds of resources can 
be loaded, and the allowable origins for those resources. 

• Server specifies one or more headers of the type "Content-Security‐Policy". 

• Example: Content‐Security‐Policy: default-src 'self' *.domain.com

• Only allow content from the page's domain and its subdomains

• Server can specify separate policies for where images can come from, where 
scripts can come from, frames, plugins, etc.

• CSP also prevents inline JavaScript and JavaScript interface for dynamic 
JavaScript generation.

Cross-Site Scripting (XSS)
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