
Instructor: Shuai Hao
shao@odu.edu

www.cs.odu.edu/~haos

Computer and Network Security
Fall 2025

CS 772/872: Advanced

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

• Safe web browsing

• Users should be able to visit a variety of web sites, without incurring
harm:

• No stolen information (without user’s permission)

• Site A cannot compromise sessions at Site B

• Support secure web applications

• Applications delivered over the web should have the same security
properties as stand-alone applications

Goals of Web Security

• Web browsers

• Responsible for securely confining Web content presented by visited websites

• Web applications

• Online merchants, banks, blogs, collaboration suites (Google Apps), chatbots
(ChatGPT, Character AI) ...

• Mix of server-side and client-side code

• Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server

• Client-side code written in JavaScript... runs in the Web browser

• Many potential bugs: XSS, CSRF, SQL injection

Two Sides of Web Security

• Web attacker

• Control a malicious service: attacker.com

• Can obtain valid SSL/TLS certificate for attacker.com

• User visits attacker.com (how?)

• Or: runs attacker’s “Facebook” website or app, etc.

• Network attacker
• Passive: Wireless eavesdropper

• Active: Evil router, DNS poisoning

Threat Model of Web Security

• Malware attacker
• Attackers bypass browser security mechanisms (e.g., isolation) and run

separately under control of OS

• Used to request and return data

• Methods: GET, POST, HEAD, ...

• Stateless request/response protocol

• Each request is independent of previous requests

• Statelessness has a significant impact on design and implementation
of applications

• URL: Global identifiers of network-retrievable documents

HTTP

http://odu.edu:80/class?name=cs772#coursework

HTTP Request

HTTP Response

HTTP version

• Document Object Model

• Object-oriented interface used to read
and write docs

• Web page in HTML is structured data

• DOM provides representation of this
hierarchy

• Browser parses a web document, creates
a collection of objects that define how
the page should be displayed

DOM

• History

• Developed by Netscape Navigator2 browser

• Later standardized for browser compatibility

• Related to Java in name only

• Server-side code written in PHP, Ruby, ASP, JSP... runs on the Web server

• “Java is to JavaScript as car is to carpet”

• Language executed by the Web browser

• Scripts are embedded in webpages

• Can run before HTML is loaded and before page is viewed

• Use to implement “active” webpages and Web applications

• A potentially malicious webpage gets to execute some code on user’s machine

JavaScript

• Port scanning behind firewall

• Request images from internal IP addresses:

• Use timeout/onError to determine success/failure

• Fingerprint webapps using known document names

JavaScript

• What are Cookies used for?

• Authentication
• The cookie proves to the website that the client previously authenticated

correctly

• Personalization
• Helps the website recognize the user from a previous visit

• Tracking --> Privacy concerns!
• Follow the user from site to site

• learn user’s browsing behavior, preferences, and so on

• HTTP is a stateless protocol; cookie add state

Cookies

• Attributes

• Expires / Max-Age - Specifies expiration date; if no date, then lasts for
session

• Path - Scope the "Cookie" header to a particular request path prefix

• e.g., Path=/docs will match /docs and /docs/Web/

• Domain - Specifies which server can receive the cookie

• Allows the cookie to be scoped to a domain broader than the domain
that returned the Set-Cookie header (e.g., login.odu.edu could set a
cookie for odu.edu)

• SameSite – Control cross-site requests

Cookies

Cookies

Sending cookies with state information over unencrypted HTTP is a very bad idea

• Secure Cookies

• A secure cookie is encrypted when transmitting from client to server

• Provides confidentiality against network attacker

• Browser will only send cookie back over HTTPS

• But does not stop most other risks of cross-site bugs (XSS attacks)

• Mix Content: HTTP and HTTPS

• Page loads over HTTPS, but has HTTP content

• <script src=http://www.site.com/script.js> </script>

• Better way to include content: <script src=//www.site.com/script.js> </script>

• Best Practice: enforce HTTPS for entire website

Cookies

Cookies

• Frame and iFrame

• Window may contain frames from different sources

• Frame: rigid division as part of frame set

• iFrame: floating inline frame

• iFrame example

• Why use frames?

• Delegate screen area to content from another source

• Browser provides isolation based on frames

• Parent page may work even if frame is broken

Isolation

• Policy Goals

• Safe to visit an evil website

• Safe to visit two pages at the same time

• Address bar distinguishes them

• Allow safe delegation

Isolation

• Components of Browser Security Model

• Frame-Frame relationships

• canScript(A,B) - Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

• canNavigate(A,B) - Can Frame A change the origin of content for Frame B?

• Frame-principal relationships

• readCookie(A,S), writeCookie(A,S) - Can Frame A read/write cookies from
site S?

Isolation

• Browser Security Mechanism

• Each frame of a page has an origin

• Origin = protocol://host:port

• Frame can access its own origin

• Network access, Read/write
DOM, Storage (cookies)

• Frame cannot access data

associated with a different origin

Isolation

A A

B

B

A

• Browser Sandbox

• Goal: safely execute JavaScript code provided by a

website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Isolation

• User can grant privileges to signed scripts
• UniversalBrowserRead/Write, UniversalFileRead, UniversalSendMail

• Browser Sandbox

• Chrome Security Architecture

• Browser ("kernel")

• Full privileges (file system, networking)

• Rendering engine

• Up to 20 processes

• Sandboxed

• One process per plugin

• Full privileges of browser

Isolation

• Browser Sandbox

• Chrome Security Architecture

• Browser ("kernel")

• Full privileges (file system, networking)

• Rendering engine

• Up to 20 processes

• Sandboxed

• One process per plugin

• Full privileges of browser

Isolation

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/design/sandbox.md

• Browser Sandbox

• Goal: safely execute JavaScript code provided by a

website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Isolation

• Frame-Frame relationships - canScript(A,B) / canNavigate(A,B)

• Same origin policy

• Can only access properties of documents and windows from the same domain,
protocol, and port

Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

• Should site A be able to link to site B?

• Should site A be able to embed site B?

• Should site A be able to embed site B and modify its contents?

• Should site A be able to submit a form to site B?

• Should site A be able to embed images from site B?

• Should site A be able to embed scripts from site B?

• Should site A be able to read data from site B?

Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

• Same Origin Policy for DOM

• Same Origin Policy for Cookies

Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

• https://example.com/a/→https://example.com/b/

• https://example.com/a/→https://www.example.com/a/

• https://example.com/→http://example.com/

• https://example.com/→https://example.com:81/

• https://example.com/→https://example.com:80/

• Same Origin Policy

• Problems

• Sometimes policy is too narrow: difficult to get login.odu.edu and
portal.odu.edu to exchange data

• Sometime policy is too broad: cannot isolation https://odu.edu/cs795 and
https://odu.edu/cs495

• Solution (?)

• document.domain: need a way around Same Origin Policy to allow two
different origins to communicate

• Both origins must explicitly opt-in this feature

Isolation

https://odu.edu/cs795
https://odu.edu/cs495

• Same Origin Policy

Isolation

Source: Feross Aboukhadijeh

• Same Origin Policy

• document.domain is not a good idea

• In order for login.odu.edu and portal.odu.edu can exchange data

document.domain = ‘odu.edu’

• Anyone on odu.edu can join the communication

• “Modern” Solution

• postMessage API: Secure cross-origin communications between cooperating
origins

• Send strings and arbitrarily complicated data cross-origin

Isolation

• Same Origin Policy

Isolation

Source: https://html.spec.whatwg.org/multipage/web-messaging.html

• Same Origin Policy

• Request images from internal IP addresses:

• Use timeout/onError to determine success/failure

• Fingerprint webapps using known image names

Isolation

• Same Origin Policy

• Same Origin Policy exceptions: Embedded static resources can come from

other origin

• Images

• Scripts (Buttons, ads, tracking scripts)

• Styles (e.g., Fonts)

Isolation

Isolation

• Same Origin Policy

• Fundamental security model of the web: two pages from different sources
should not be allowed to interfere with each other

• Should site A be able to link to site B?

• Should site A be able to embed site B?

• Should site A be able to embed site B and modify its contents?

• Should site A be able to submit a form to site B?

• Should site A be able to embed images from site B?

• Should site A be able to embed scripts from site B?

• Should site A be able to read data from site B?

Computer and Network Security

Fall 2025

CS 772/872: Advanced

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

• SQL Injection

• Browser sends malicious input to server

• Bad input checking leads to malicious SQL query

• CSRF – Cross-Site Request Forgery

• Bad web site sends browser request to good web site, using credentials of an
innocent victim

• XSS – Cross-Site Scripting

• Bad web site sends innocent victim a script that steals information from an
honest web site

Web Vulnerabilities and Attacks

• SQL Injection

• Insertion or Injection of a SQL query via the input data from the client to
the application (to execute malicious SQL statements)
• read sensitive data from the database

• modify database data

• execute administration operations on the database

• Very common in old but prevalent PHP/ASP applications

• Improperly string escaping

• apostrophe ’: incorrectly interpret delimit strings

• pair of hyphens (--): specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed

SQL Injection

SQL Injection

Web

Server

Web

Browser

(Client)

DB

Enter

Username

&

Password

SELECT * FROM Users

WHERE user='me'

AND pwd='123'

SQL Injection

$login = $_POST['login'];

$pass = $_POST['password’];

$sql = "SELECT id FROM users

WHERE username = '$login'

AND password = '$password'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

• Normal Input

SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'me' AND pwd = '123'”

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

• Normal Input

SQL Injection

$u = $_POST['login’]; // me

$pp = $_POST['password’]; // 123’

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'me' AND pwd = '123’'”

$rs = $db->executeQuery($sql); //SQL Syntax Error

if $rs.count > 0 {

// success

}

• Bad Input

SQL Injection

$u = $_POST['login’]; // me’--

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = 'me’-- AND pwd = '123’'”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

rest of the SQL query will be ignoredAdmin

SQL Injection

$u = $_POST['login’]; // ‘or 1=1 --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ’’or 1=1 -- AND pwd = '123’'”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

No Username Needed

SQL Injection

$u = $_POST['login’]; // ‘; DROP TABLE [users] --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] –- AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Causing Damage

SQL Injection

$u = $_POST['login’]; // ‘; DROP TABLE [users] --

$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] –- AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Causing Damage

SQL Injection

$u = $_POST['login’]; // ‘; exec xp_cmdshell ‘net user add usr pwd’ --
$pp = $_POST['password’]; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;
// "SELECT id FROM users WHERE uid = ’’; exec xp_cmdshell ‘net user

add usr pwd’ -- AND …”

$rs = $db->executeQuery($sql); //(No Error)

if $rs.count > 0 {

// success

}

• Malicious Input

Run arbitrary system commands
in Microsoft SQL server

• Preventing SQL Injection

• Never trust user input

• There are tools for safely passing user input to Database

• Parameterized SQL (Prepared SQL)

• ORM (Object Relational Mapper)

SQL Injection

• Preventing SQL Injection

• Parameterized SQL

• Build SQL queries by properly escaping arguments: sending queries
and arguments separately to server

SQL Injection

sql = “INSERT INTO users(name, email) VALUES(?,?)”

cursor.execute(sql, [‘Shuai Hao’, ‘shao@odu.edu’])

sql = "SELECT * FROM users WHERE email = ?"

cursor.execute(sql, [‘shao@odu.edu'])

• Preventing SQL Injection

• Object Relational Mappers (ORM)

• ORM provide an interface between native objects and relational
databases

SQL Injection

class User(DBObject):

 __id__ = Column(Integer, primary_key=True)

 name = Column(String(255))

 email = Column(String(255), unique=True)

if __name__ == "__main__":

 users = User.query(email=‘shao@odu.edu').all()

 session.add(User(email=‘haos@cs.odu.edu', name=Shuai Hao'))

 session.commit()

•

•

•

• CSRF – Cross-site request forgery

• Bad web site sends browser request to good web site, using credentials of an
innocent victim

•

•

Vulnerabilities

• Recall: cookies

Cross-Site Request Forgery (CSRF)

• Basic Attack Scenario

Attack Server

Victim Server
Victim client

Cross-Site Request Forgery (CSRF)

• CSRF Example

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2EIn a CSRF attack, a user is

tricked into submitting an

unintended web request to a

website

• Preventing CSRF Attacks

• Cookies do not indicate whether an authorized application submitted
request since they’re included in every (in-scope) request

• Referer Validation

• Secret Token Validation

• SameSite Cookies

Cross-Site Request Forgery (CSRF)

• Preventing CSRF Attacks

• Referer Validation

• The Referer request header contains the URL of the previous web
page from which a link to the currently requested page was followed

• allow servers to identify where people are visiting from

Cross-Site Request Forgery (CSRF)

• Preventing CSRF Attacks

• Secret Token Validation

• bank.com includes a secret value in every form that the server can
validate

Cross-Site Request Forgery (CSRF)

<form action=“https://bank.com/transfer" method="post">
<input type="hidden" name="csrf_token"

value=“434ec7e838ec3167ef5">

<input type=“text" name="to">
<input type=“text" name=“amount”>

<button type="submit">Transfer!</button>

</form>

• CSRF Example

Cross-Site Request Forgery (CSRF)

User credentials

Cookie: SessionID=523FA4cd2EIn a CSRF attack, a user is

tricked into submitting an

unintended web request to a

website

• Preventing CSRF Attacks

• SameSite Cookies: Cookie option that prevents browser from sending a cookie
along with cross-site requests

• cookie will only be sent if the site for the cookie matches the site currently
shown in the browser's URL bar.

• Strict Mode: Never send cookie in any cross-site browsing context, even
when following a regular link

• Lax Mode.: Session cookie is allowed when following a regular link but
blocks it in CSRF-prone request methods (e.g. POST)

Cross-Site Request Forgery (CSRF)

•

•

•

•

•

• XSS – Cross-site scripting

• Bad web site sends innocent victim a script that steals information from an
honest web site

Vulnerabilities

• Cross-site Scripting

• Attack occurs when application takes untrusted data and sends it to a
web browser without proper validation or sanitization

Cross-Site Scripting (XSS)

• Basic Attack Scenario: Reflected XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server
Victim client

Cross-Site Scripting (XSS)

• Normal Request

Cross-Site Scripting (XSS)

• Normal Request

Cross-Site Scripting (XSS)

• Embedded Script

Cross-Site Scripting (XSS)

• Embedded Script

• Types of XSS

• An XSS vulnerability is present when an attacker can inject scripting code
into pages generated by a web application.

• Reflected XSS: The attack script is reflected back to the user as part of
a page from the victim site

• Stored XSS: The attacker stores the malicious code in a resource
managed by the web application, such as a database

• DOM-based XSS

Cross-Site Scripting (XSS)

• Basic Attack Scenario: Reflected XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server
Victim client

• Stored XSS

Cross-Site Scripting (XSS)

Attack Server

Victim Server
Victim client

Inject malicious
script

1

• Reflected XSS:

• Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website

• Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised

• Victims were then redirected to a phishing site and prompted to enter
sensitive financial data

Cross-Site Scripting (XSS)

• Stored XSS: MySpace.com (Samy worm)

• MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

• But missed one. One can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)’)”>

• With such JavaScript hacking

• Samy worm infects anyone who visits an infected MySpace page
and adds Samy as a friend

• Samy had millions of friends within 24 hours

Cross-Site Scripting (XSS)

• Why is XSS so prevalent and hard to defend?

• Dynamic web sites incorporate user content in HTML pages (e.g.,
comments/review sections)

• Websites host uploaded user documents

• HTML documents can contain arbitrary JavaScript code

• Non-HTML documents may be content-sniffed as HTML by browsers

• Insecure JavaScript programs may directly execute code that comes from

external parties

Cross-Site Scripting (XSS)

• Filtering Malicious Tags

• For a long time, the only way to prevent XSS attacks was to try to filter
out malicious content

• Validate all headers, cookies, query strings, form fields, and hidden fields
(i.e., all parameters) against a rigorous specification of what is allowed

• Signature-/rule-based policies are difficult to maintain and are likely to be
incomplete

Cross-Site Scripting (XSS)

• Filtering is Hard

• Filter Action: filter out <script

• Attempt 1: <script src= "…">
• src="…"

• Attempt 2: <scr<scriptipt src="...”

• <script src="...">

• Filters can't catch persistent XSS attacks (stored XSS) in which the server
saves attacker-injected data

Cross-Site Scripting (XSS)

• XSS Defense

• “httponly” cookies

• A server can tell a browser that client-side JavaScript should not be able
to access a cookie.

• Server adds the ”httponly" token to a "Set‐Cookie" HTTP head value.

• Only a partial defense (attacker can still issue requests that contain a
user's cookies (CSRF).

• Privilege separation

• Use a separate domain for untrusted content

• Google stores untrusted content in googleusercontent.com (e.g.,
cached copies of pages, Gmail attachments).

Cross-Site Scripting (XSS)

• XSS Defense

• Content Security Policy (CSP)

• Allows a web server to tell the browser which kinds of resources can
be loaded, and the allowable origins for those resources.

• Server specifies one or more headers of the type "Content-Security‐Policy".

• Example: Content‐Security‐Policy: default-src 'self' *.domain.com

• Only allow content from the page's domain and its subdomains

• Server can specify separate policies for where images can come from, where
scripts can come from, frames, plugins, etc.

• CSP also prevents inline JavaScript and JavaScript interface for dynamic
JavaScript generation.

Cross-Site Scripting (XSS)

Computer and Network Security

Fall 2025

CS 772/872: Advanced

Course Link:

https://shhaos.github.io/courses/CS872/netsec-fall25.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 77
	Slide 78

