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Abstract
Online social networks (OSNs) attract attackers that use

abusive accounts to conduct malicious activities for economic,
political, and personal gain. In response, OSNs often deploy
abusive account classifiers using machine learning (ML) ap-
proaches. However, a practical, effective ML-based defense
requires carefully engineering features that are robust to ad-
versarial manipulation, obtaining enough ground truth labeled
data for model training, and designing a system that can scale
to all active accounts on an OSN (potentially in the billions).

To address these challenges we present Deep Entity Classifi-
cation (DEC), an ML framework that detects abusive accounts
in OSNs that have evaded other, traditional abuse detection
systems. We leverage the insight that while accounts in isola-
tion may be difficult to classify, their embeddings in the social
graph—the network structure, properties, and behaviors of
themselves and those around them—are fundamentally dif-
ficult for attackers to replicate or manipulate at scale. Our
system:
• Extracts “deep features” of accounts by aggregating prop-

erties and behavioral features from their direct and indirect
neighbors in the social graph.

• Employs a “multi-stage multi-task learning” (MS-MTL)
paradigm that leverages imprecise ground truth data by
consuming, in separate stages, both a small number of high-
precision human-labeled samples and a large amount of
lower-precision automated labels. This architecture results
in a single model that provides high-precision classification
for multiple types of abusive accounts.

• Scales to billions of users through various sampling and
reclassification strategies that reduce system load.

DEC has been deployed at Facebook, where it classifies all
users continuously, resulting in an estimated reduction of
abusive accounts on the network by 27% beyond those already
detected by other, traditional methods.

1 Introduction
Online Social Networks (OSNs) connect billions of users
around the globe. The largest social network, Facebook, has

more than two billion active users sharing content each
month [45]. The vast scale of these networks in turn attracts
adversaries that seek to exploit the platforms for economic,
political, and personal gain. While most OSN activity comes
from legitimate users, attackers invest significant resources in
signing up fake accounts (i.e., accounts not representative of
a real person), creating accounts that impersonate real people,
or compromising the accounts of real users. These abusive
accounts are used to drive a range of negative behaviors in-
cluding spam, fake engagement, pornography, violence, and
terrorism—all actions which violate community norms [12]
and are widely studied forms of abuse [1].

A core challenge faced by OSNs is how to identify and
remediate abusive accounts in such a way that is both scalable
and precise. Scalability requires approaches that can operate
on billions of users and tens of billions of daily actions to
detect dozens of different abuse types. Systems that prioritize
precision are necessary because abusive accounts are rela-
tively rare [44, 45] and thus a drop in precision would lead
to the OSN taking errant actions against a large number of
benign users.

OSNs use a broad set of techniques ranging from rule-
based heuristics [49] to modern machine-learning algo-
rithms [26, 48] to classify and remediate abusive accounts
at scale. Rule-based heuristics act as a first line of defense [4],
identifying basic or common attacker tools, techniques, and
resources. These heuristics however lack power: they focus
on precision rather than recall, they often do not capture the
complexity of account behaviors, and they are by definition
reactive [25]. Machine learning systems overcome some of
these problems: they generalize from past labeled data in or-
der to improve recall, and they can be iterated on over time
to adapt to adversarial evolution [8]. However, precise ma-
chine learning systems require a large amount of high-quality
labeled ground truth data, can be costly to deploy (in both
engineering effort and computational resources), and can be
evaded by adversaries who learn how to mimic the appear-
ance of real accounts [17]. Rule-based heuristics and tradi-
tional machine learning systems can identify and remediate
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the vast majority of abuse [4], but identifying the remaining
hard-to-classify accounts—those that closely resemble real
users and/or evade OSN defenses—requires fundamentally
different and more complex solutions.

A critical insight is that while attackers can produce abusive
accounts that appear legitimate in isolation, those accounts’
embedding in and engagement with the social graph are fun-
damentally difficult to forge. For example, the number of
friend requests sent by a given user is easy for an attacker
to control, but the number of friend requests sent by all of
that user’s friends is outside of the attacker’s control.1 Al-
though attackers can attempt to camouflage their accounts by
connecting to legitimate nodes in the graph, this strategy not
only is prohibitive to implement at scale, but also creates side
effects (e.g., large numbers of rejected friend requests) that
are detectable by traditional means.

Leveraging this insight, we develop Deep Entity Classi-
fication (DEC),2 a method and supporting system for OSN
abusive account detection. Instead of classifying accounts
based on “direct” features and behaviors, DEC leverages so-
cial network structure, extracting more than 20,000 features
for each account, by operating across the graph. These fea-
tures are used to train supervised machine learning models
that classify accounts across many different kinds of abuse.
The DEC system consists of label generation and feature ex-
traction, as well as model training, deployment, and updating.
Ultimately DEC produces per-account abusive classification
results that are robust to adversarial iteration (Section 7).

The large number of features generated by DEC’s graph
traversal imposes two challenges in terms of model training.
First, if applied naïvely, the large feature space could dramati-
cally increase the underlying model complexity, resulting in
poor generalization and degraded performance. Second, ob-
taining proper generalization across so many features would
require a prohibitively large training set in a problem space
where high-quality human-labeled data is difficult to obtain
at billion-user scale.

The second key DEC insight is that in addition to small-
scale, high-quality human-labeled data, we can utilize the
results of rule-based heuristics as additional “approximate
labels.” The classifications from such rules are not human
reviewed and thus have lower precision than human-reviewed
data, but the absolute quantity is much higher.

Building on this insight, we design a “multi-stage multi-
task learning” (MS-MTL) framework. Our framework ex-
tracts low-dimensional transferable representations via a deep
neural network trained using the high-volume approximate
labels, then fine-tunes dedicated models given the learned
representations and the high-quality human-labeled data.

Model training occurs in two separate stages. The first

1See Section 8.4 for consideration of the case where attacker creates
groups of abusive accounts that are connected to each other.

2 In this context “deep” refers to the features generated via network fanout
from each account, not neural network structure.

stage trains a multi-task deep neural network [6] on the col-
lected features using the large number of lower-precision
approximate labels. Since accounts identified by these lower-
precision signals exhibit a multitude of different abuse types
(e.g., spam, objectionable content, or malware), we formulate
a learning “task” for each abuse type. We then extract the
penultimate layer of the neural network as a low-dimensional
feature vector [22]. This vector is input to the second stage
of the model, which is trained using per-task high-precision
human-labeled data with a standard binary classifier.

MS-MTL allows DEC to learn the underlying common
representations of different abuse types in the first model
stage, and then to distinguish different abuse types using high-
precision data with separate models in the second stage, re-
sulting in a score for each abuse type for each account. In this
way we can use a single model to label as “abusive” accounts
exhibiting any of a multitude of abuse types (e.g., scams,
spam, adult content, etc.).

Our DEC design is deployed at Facebook, where it has
run in production for more than two years. During that time
DEC led to the identification and remediation of hundreds
of millions of abusive accounts. By comparing the number
of accounts actioned by DEC with an unbiased estimate of
the number of abusive accounts remaining on the platform,
we infer that DEC is responsible for reducing the volume of
abusive accounts by approximately 27%.

In summary, our contributions include:
• The algorithmic design, system architecture, and imple-

mentation of DEC. Extracting more than 20,000 features
per entity, across multiple hops, for billions of active users,
presents a unique set of systems challenges (Section 4).

• A novel feature extraction process that produces “deep
features” (Section 5) that, over our evaluation, showed no
signs of adversarial adaptation (Section 7.4).

• The MS-MTL classification paradigm, which allows us to
use a single model architecture to produce high-precision
classifiers for each abuse class (Section 6).

• A quantitative evaluation of DEC and MS-MTL vs. other
approaches, as well as a qualitative assessment of the im-
pact DEC has had on the overall state of abusive accounts
not caught by other systems (i.e., those hardest to classify)
at Facebook (Section 7).

• A discussion of the lessons learned from two years of pro-
duction deployment at Facebook (Section 8).

2 Background
Here we present an overview of abusive accounts on OSNs,
existing defenses, and relevant machine learning terminology.

2.1 Abusive Accounts
We define an abusive account to be any account that violates
the written policies of a given OSN (e.g., [12]). Attackers use
abusive accounts for various reasons, including for financially
motivated schemes (e.g., spreading spam, scams, objection-
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able content, or phishing links [13–15]) and for causing user
harm (e.g., online harassment or terrorism [16]). Abusive
accounts can be broadly broken down along two dimensions:
1. Account Provenance. An abusive account can be fake,

where the account does not represent an actual person or
organization, or real, where it is a legitimate user account,
though potentially hijacked by an attacker.3

2. Abusive Behavior. An abusive account can be character-
ized by the type of abuse it conducts, such as spreading
scams or spam.

2.2 Defenses
There are multiple types of defenses against abusive accounts
on OSNs. Rule-based heuristics, such as rate limits on par-
ticular user actions, are straightforward, easy to design and
evaluate, and can be quite powerful in practice. However, they
are often reactive, permitting some amount of abuse before a
threshold is crossed and a rule is triggered. In addition, they
conservatively focus on precision rather than recall to avoid
false positives.

Another large-scale detection technique is machine
learning-based classification, which affords increased com-
plexity of the detection algorithm through digesting more
features. However, adversaries can adapt (sometimes quickly)
in response to classifier actions [10], making it challenging
to properly design features that are difficult for adversaries to
discover and evade. Another challenge of this approach is to
collect enough high-precision training data. Human labeling
is typically the most reliable source but can be expensive in
terms of time, money, and human effort.

Rule-based heuristics and typical machine-learning based
classifiers are able to identify the vast majority of abusive
activity in online services [4]. Identifying those accounts that
are able to evade the primary detection systems presents a
especially difficult challenge, as they represent the hardest to
classify accounts. For example, such accounts may be those
that adversaries have iterated on while adapting to OSN de-
fenses, or they may very closely resemble real users. The
system we present in this paper is designed to mitigate these
issues by employing sparse aggregated features on the social
graph that should be difficult for attackers to manipulate, and
by using a multi-stage training framework.

2.3 Machine Learning Terminology
In this section we describe the machine learning terminology
relevant to DEC.

2.3.1 Deep Neural Networks

The first stage of DEC uses a deep neural network (DNN)
architecture [31]. It is a cascade of multiple layers of nonlinear
processing units for feature extraction and transformation.

3Real user accounts that violate OSN policies without having been com-
promised are outside the scope of this work, as they are relatively small in
volume and are actioned on by other systems.

Each successive layer uses the output from the previous layer
as input. In deep learning, each layer learns to transform
its input data into a slightly more abstract and composite
representation, with the last layer outputting a single score.

2.3.2 Embeddings

In the context of neural networks, embeddings are low-
dimensional, continuous, learned vector representations of
a discrete feature vector. Neural network embeddings are use-
ful because they can reduce the dimensionality of categorical
variables and meaningfully represent categories in the trans-
formed space [28]. A common usage of embeddings is to
serve as input features for machine learning models. In each
layer of a deep neural network, a low-dimensional vector can
be extracted as the embedding of the layer.

2.3.3 Gradient Boosted Decision Trees

The embedding of the last layer of deep neural network in
DEC’s first stage is used as the input feature vector for the
second stage of DEC training, which uses a model of gradi-
ent boosted decision trees (GBDTs). GBDTs are a machine
learning approach that iteratively constructs an ensemble of
weak decision tree learners through boosting. It is a widely
used algorithm in classification and regression [20].

3 Related Work
The problem of detecting abusive accounts in OSNs has re-
ceived a great deal of attention in the literature. We split the
published efforts into three categories based on technique,
and also describe the relevant machine learning literature.

3.1 Detecting Abusive Accounts
Several works have explored using graph structure and the
features of neighboring nodes to detect abuse. Yang et al.
examined the effectiveness of graph and neighbor-based fea-
tures to identify spammers on Twitter [58]. Their work formal-
ized 24 detection features—including four graph-based and
three direct neighbor properties—showing how these features
could identify spammers better than prior state-of-the-art so-
lutions [32, 49, 53]. Our work creates a generalized machine-
learning framework (utilizing these features among many
others) based on graph, direct, and indirect neighbor features
(the “deep entity”) which scales to billions of social network
users.

Other work has focused exclusively on graph structure,
with the goal of identifying groups or connected components.
Stringhini et al. produced EVILCHORT, a system designed
to identify accounts with common networking resources (e.g.,
IP addresses) and ultimately generate groups of malicious ac-
tors [50]. Earlier, Zhao et al. created BotGraph, which creates
an activity graph from user actions and uses that graph to iden-
tify tightly connected components indicative of abuse [64]. In-
stead of focusing on the structure of the graph, Nilizadeh et al.
observed how spam moved through the graph to identify com-
mon propagation patterns [38]. Compared to these works, we
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focus on a generalized framework which leverages such fea-
tures, as well as a scalable machine learning approach which
is utilized continuously at Facebook.

An alternative approach uses “honeypot” accounts to ul-
timately yield features which could be used for detection.
Stringhini et al. used honeypot Twitter accounts to collect
direct account, behavior, and content signals which could be
used to identify spammers [49]. Similarly, Lee et al. also
used honeypot Twitter and myspace accounts to collect di-
rect account, content, and timing signals, also identifying
abuse [32]. The features from both these works were later
formalized and further analyzed (along with other features)
by Yang et al. [58].

3.2 Sybil Accounts
A Sybil attack refers to an attack where individual malicious
users join the OSN multiple times under multiple fake iden-
tities. Many algorithms and systems have been proposed to
defend against Sybil attacks.

Yu [61] conduct a comprehensive study comparing various
Sybil defenses on social networks as of 2011. A typical graph
theory-based Sybil defense systems is SybilGuard [63]. The
protocol is based on the social graph among user identities,
where an edge between two identities indicates a human-
established trust relationship. The key observation is that
malicious users can create many identities but few trust rela-
tionships. Thus there is a disproportionately small “cut” in the
graph between the sybil nodes and the honest nodes. However,
there are two downsides of SybilGuard: it can allow a large
number of sybil nodes to be accepted, and it assumes that so-
cial networks are fast mixing, which has not been confirmed
in the real world. Yu et al. [62] propose a SybilLimit proto-
col that leverages the same insight as SybilGuard but offers
near-optimal guarantees. Yang et al. claim that sybils do not
form tight knit communities, as other work has explored [59];
instead, linkages are formed between sybils and normal users
“accidentally” and therefore tight linkage-based defenses in
isolation are problematic.

SybilInfer, proposed by Danezis and Mittal [9], is another
sybil detection system. It uses a probabilistic model of honest
social networks and a Bayesian inference engine that returns
potential regions of dishonest nodes. SybilRank [5] is a de-
tection framework that has been deployed in Tuenti’s opera-
tion center. It relies on social graph properties to rank users
according to their perceived likelihood of being fake, and
has been shown to be computationally efficient and scalable.
Wang et al. [54] take a different appproach, instead focus-
ing on user actions as a stream and making the observation
that the stream of actions for some types of attacks will be
different than that of regular users.

While most Sybil defense algorithms and systems focus
on exploring connections inside the social graph, this ap-
proach may fail to detect some types of abuse such as com-
promised accounts since they are not distinguishable on the

social graph. DEC instead operates by combining information
from the social graph with direct user features to conduct
general abuse classification, irrespective of Sybil properties.

3.3 User Footprint
A “user footprint” is a signal that can be used to identify the
behaviors of a same user across different OSNs. Malhotra
et al. [37] propose the use of publicly available information
to create a digital footprint of any user using social media
services. This footprint can be used to detect malicious be-
haviors across different OSN platforms. Xiangnan et al. [29]
study the problem of inferring anchor links across multiple
heterogeneous social networks to detect users with multiple
accounts. The key idea is that if a user is abusive on one
platform, they are likely to be abusive on other platforms.
However, the user footprint is not helpful when a user is only
dedicated to spreading abuse in a single platform, which is
the focus of DEC.

3.4 Machine Learning
In this section we describe the relevant machine learning
works that DEC draws inspiration from.

3.4.1 ML for Abuse Detection

Machine learning-based classification is widely used in abuse
detection. Stein et al. [48] proposed one of the first machine
learning frameworks for abuse detection, applied to Facebook
in 2011. The system extracts users’ behavioral features and
trains a machine learning model for classification. A similar
spam detection system using content attributes and user be-
havior attributes has been deployed on Twitter as described
by Benevenuto et al. [3]. These efforts laid the groundwork
for our “behavioral” model described in Section 7.2.

Fire et al. [18] propose the use of topological anomalies
on the social graph to identify spammers and fake profiles.
Their approach uses only four features per user, all of which
are related to the degree of graph connection of the user and
their friends. The approach is proven to be useful in various
OSNs. For DEC we employed a similar approach for feature
extraction, however with a greatly expanded feature space.

In terms of classification algorithms, Tan et al. [51] de-
signed an unsupervised spam detection scheme, called UNIK.
Instead of detecting spammers directly, UNIK works by delib-
erately removing non-spammers from the network, leveraging
both the social graph and the user-link graph. In the context
of supervised learning, Lin et al. [35] conducted experiments
on a Twitter dataset to compare the performance of a wide
range of mainstream machine learning algorithms, aiming to
identify the ones offering satisfactory detection performance
and stability based on a large amount of ground truth data.

3.4.2 Other Relevant ML Work

Recent advances in machine learning, especially in graph
learning, transfer learning, and online learning, can also be
applied to ML-based abusive account detection.
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Graph learning seeks to learn a node embedding or make
predictions using relations in the graph. Variants of the tech-
niques have been applied to modeling social networks [40],
object interactions [24], citation networks [27], and abstract
data structures in program verification [34]. Perozzi et al. [40]
proposed an unsupervised graph learning technique to learn
node embeddings using random walks in the local graph. Re-
cent works on graph neural networks (GNNs) [27, 33, 55]
extend convolutional neural networks to perform node clas-
sifications. However, none of the existing graph learning ap-
proaches has been shown to scale to billions of nodes as in a
typical OSN social graph. We are actively experimenting with
GNNs for DEC and have encountered numerous technical
challenges in getting the system to work on a graph as large
and diverse as that of an OSN. Our exploratory work does
suggest potential improvements in model performance, but at
a much higher computational cost for training.

Transfer learning uses existing pre-trained models or em-
beddings as a basis for training models for new tasks. The
technique is commonly used to improve the performance
of ML models (e.g., facial recognition or image segmenta-
tion [39, 60]), especially in cases where little labeled training
data is available. In DEC, we leverage transfer learning to
boost our model performance by training the first-stage em-
bedding on a second set of labels.

Online learning, first proposed by Saad et al. [43], is a
technique to tune existing ML classifiers in real time using
newly available training data. Classified samples are sent
for labeling, which updates the training set to better capture
potential adaptive behaviors; retraining then strengthens the
classifier against such behaviors [2]. In theory DEC could be
adapted to incorporate online learning; however, our human
labels are expensive and take a long time to collect, so the
benefit of online learning over our current approach of regular
offline retraining would be minimal.

Active learning [7, 46], similar to online learning, is a tech-
nique to retrain the model with new data. In active learning,
only the data points in which the model has low confidence
are assigned to human labellers for review. This approach is
intended to achieve maximum model performance improve-
ment with limited labeling resource. In our work we select
accounts at random for expert labelling. While active learning
is a potential avenue for improvement, we have been unable
to test it because of labeling constraints: random-sample la-
beling is used not only for training DEC but also for other
applications across Facebook, so any active learning experi-
ments would require additional labellers.

4 DEC System Overview
DEC extracts features from active Facebook accounts, clas-
sifies them, and then takes actions on the classified abusive
accounts. In order to deploy such a system in a scalable way,
we need to address multiple challenges, including scalabil-
ity, latency, variety of abuse types, and false positives. DEC

Offline ComponentOnline Component

User Action

Online 
Social 
Network

Enforcement

Raw Features

Feature 
Aggregration

Classifica-
tion

Abusive?

Model
Training

Proactive 
Human Label

Reactive 
Human Label

User Appeals

Training 
Data

Figure 1: DEC system overview. When an user action occurs
on Facebook, the online component will, concurrent with user
activity, classify and potentially begin remediation on the user
and/or action. Meanwhile, the extracted features from the
online component, together with the training data, are used
by the offline component to train new models.

uses multiple components in order to handle these challenges
separately.

Figure 1 shows the DEC architecture. At the highest level,
we break down DEC into online and offline components,
discussed subsequently.

4.1 Online Component
DEC is triggered by Facebook user actions. When an action
occurs, DEC may, based on heuristics (see Section 5.2), sched-
ule a task concurrent with the user activity to start extracting
the raw features for the target node and sampled neighboring
nodes. For an average account on Facebook, DEC needs to
extract hundreds of features for each of hundreds of neighbor-
ing nodes, resulting in tens of thousands of raw features to be
extracted. Such queries are computationally expensive, and
thus the whole process is done asynchronously offline without
influencing the user’s normal site activity. After feature ex-
traction, DEC aggregates the raw features to form numerical
sparse features (further discussed in Section 6). DEC then
generates the classification result for the account based on
the aggregated features and the in-production model. If the
account is classified as abusive, DEC exercises enforcement
on the account.

4.2 Offline Component
The offline component of DEC includes model training, and
feedback handling.

To classify multiple types of abuse, DEC maintains mul-
tiple models, where each model handles a different type of
abuse. Each dedicated model is trained on the learned low-
dimensional embeddings from the raw features collected as
part of the concurrent feature extraction (online component).
DEC uses the MS-MTL training framework to simultaneously
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train and maintain models for different abuse types (further
discussed in Section 6).

As part of our implementation within Facebook, DEC has
integrated both human labeling as well as user feedback into
the training and enforcement process. Facebook uses a dedi-
cated team of specialists who can label whether an account
is abusive. These specialists label accounts both proactively
(based on features) and reactively (based on user feedback).
For proactive labeling, human labellers check accounts sur-
faced by various detection signals, take samples, label them,
and then take actions accordingly. For the reactive labeling,
the process begins when a user appeals an enforcement ac-
tion (as surfaced through the Facebook product). A human
reviewer then investigates the account and either accepts the
appeal (false positive from DEC’s perspective) or rejects the
appeal (true positive). Both proactive and reactive human la-
bel results are fed into DEC model training as labeled data.
Offline model training uses the human labeled data combined
with the extracted features from the online component. Af-
ter repeated offline and online testing, updated models are
deployed into production. DEC is regularly retrained by Face-
book to leverage the most recent abuse patterns and signals.

To summarize, DEC:
1. Extracts “deep features” across all active accounts on Face-

book to allow classification.
2. Uses classification to predict the level of abusiveness for all

active accounts, keeping up-to-date classification results
for all users actively engaging with the network.

3. Incorporates user and labeler feedback to iterate classifier
models.

5 Methods: Deep Feature Extraction
Feature extraction is a core part of DEC. Compared to tra-
ditional abuse detection systems, DEC uses the process of
aggregate feature calculations which aims to extract deep
features of a “target” account.

5.1 Deep features
In the context of DEC, “deep” refers to the process of fan-
ning out in the social graph. This graph consists of not only
users but all entities that the platform supports, such as groups,
posts, and more. A direct feature is a feature that is a function
of a particular entity only, such as account age or group size.
A deep feature is a feature that is a function of the direct fea-
tures of entities linked to the entity in question. For example,
“average age of an account’s friends” is a deep feature for the
account. Deep features can be defined recursively, as aggre-
gations of deep features on linked accounts; for example, a
deep feature on a photo could be “average number of groups
joined by friends of people tagged in the photo.”

Deep features are useful for classification because they re-
veal the position of target node in social graph by looking
at neighboring nodes. For instance, in the detection of fake
accounts, a common pattern that can be revealed by deep fea-

Table 1: Types of entities with their example direct features
and example deep entities in DEC.

Entity Type Direct Features Deep Entities

User age, gender entities administered, posts
Group member count, age admins, group members
Device operating system users sharing the device
Photo like count, hash value users in the photo

Status Update like count, age groups it shared to
Group Post has a link? users commenting

Share number of times shared original creator
IP Address country, reputation registered accounts

tures is the batch creation of fake accounts. When classifying
fake accounts, deep features include the features from the
IP address that registers the account, as well as all the other
accounts created from the IP address. When classifying us-
ing the above features, the scripted activity of batch account
registration can be easily detected.

A key insight is that deep features not only give additional
information about an account, but also are difficult for ad-
versaries to manipulate. Most direct features can easily be
changed by the person controlling the entity. For example,
account age is controlled by the account owner, and group
membership is controlled by the group admin. In contrast,
aggregated features that are generated from entities associated
with the target account are much more difficult to change. For
example, if we consider the age of all of a user’s friends, the
mean value would be much more difficult to alter by that user,
especially when the number of friends is large. Eventually,
we can even take a step further by scrutinizing all the friends
of friends, and it becomes almost impossible for an adversary
to completely change such information.

Table 1 lists some of the entity types considered by DEC,
including user, group, device, photo, status update, and group
post. For each entity type, we list a few examples of direct
features and deep (or fan-out) entities. For direct features, we
use features effectively leveraged by other ML classifiers, as
well as those found useful during manual investigations.

Figure 2 illustrates an example deep feature. This feature is
based on neighboring nodes within two hops from an example
account (center, color orange). An edge between two nodes
represents the relation of mutual friends. This 2-hop deep
feature has exponentially more dependent values comprising
the feature than a direct feature.

5.2 Implementation
To extend the above examples to work in production, we have
three issues to address: (a) What kind of neighboring nodes
do we look at? (b) How can we generate the deep features
meaningfully? and (c) How do we keep the computational
cost from exploding as we fan out?

The complex and varied nature of OSN products requires us
to build our system as generically as possible, allowing us to
incorporate a wide variety of entities and edges between them.
We also want to be able to add new types of entities or edges as
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Figure 2: Visualization of the level-2 social graph for a single
“target” account in DEC. The centered orange node is the
target node to classify. The blue nodes are the neighboring
nodes from the first fan-out level. The red nodes are from the
second fan-out level. An edge between two nodes represents
the relation of mutual friends. For each node visualized in
this graph, hundreds of features are extracted and aggregated
for classification.

new features and products appear on Facebook. In the social
graph, even a single pair of entities can be connected with
multiple types of edges. For example, a user can be connected
to a group by being the admin of the group. They can also be
connected through membership, which is a weaker connection.
Even further, a user can be connected by commenting on a
post from the group.

To define deep features, we apply aggregation techniques
on the set of direct features of nodes, following the lead of
Xiao et al. [57], who effectively leveraged aggregated features
across clusters of accounts to identify fake ones. As shown
in Table 2, we use different aggregation methods for numeri-
cal features and categorical features. To aggregate numerical
features such as age, we calculate statistics on their distri-
bution such as mean and percentiles. On the other hand, for
categorical features such as home country, our strategy is to
aggregate them statistically into numerical features. Lastly,
we also jointly aggregate numeric features with categorical
features by observing the distribution of the numeric features
for a given categorical feature. For example, a feature can
be the number of accounts that logged in from the same de-
vice as the target account, given the device uses the Android
operating system.

The use of aggregation has two advantages: first, it pro-
duces a dense feature vector, reducing the dimensionality of
the model. Second, it helps the model resist adversarial adap-
tation as discussed in Section 5.1 above. Note that we do not
need to define each deep feature explicitly: we can define var-

Table 2: Example aggregation methods for deep features. Here
p25 and p75 refer to the 25th and 75th percentiles, respec-
tively.

Feature Type Aggregation Method

Numeric min, max, mean, variance, p25, p75

Categorical percentage of the most common category,
percentage of empty values,

entropy of the category values,
number of distinct categories

Both Numeric & max of numeric A from category B,
Categorical p75 of numeric A from most common category

ious graph traversal steps (e.g., user→ user, or user→ group
→ photo) and automatically apply all aggregation methods
to all the direct features of the target entity. In practice, this
method produces thousands of distinct deep features.

Ideally, we would trigger a new feature extraction and clas-
sification every time a user action happens on Facebook. This
is not possible at billion-user scale given the necessary compu-
tational resources. DEC relies on heuristics to decide when to
begin the process of feature extraction and (re-)classification.
The core idea is the use of a “cool-down period” between
reclassifications, where the length of the cool-down period
increases as the account spends more time active on the plat-
form. Our motivating intuition is that accounts that have been
active for longer have gone through many previous checks and
are generally less likely to be abusive, while newly registered
accounts are more likely to be created to abuse.

While (re-)classification is triggered in production in real
time, feature extraction and aggregation are computed asyn-
chronously without interfering with an account’s experience
on Facebook. Given the expense of extracting all deep fea-
tures, especially for an account with many connections in
the social graph, we restrict the amount of computational re-
sources used per account. Specifically, we place a limit on
the number of neighboring nodes used to compute a deep
feature, and sample randomly if the number is over the limit.
The random sample is different on each reclassification; our
goal is to capture the position of the entity in the graph from
many different angles. This sampling procedure allows us
to limit computational cost without reducing the diversity of
features.4

5.3 Feature selection
We only use deep features of a target account, and not direct
features, for classification in DEC. The primary motivation
for this choice is that we observed that direct target account
features are extremely likely to become dominant features
in the model. This undesired dominance is caused by the
bias inherent in our training data. For example, one of our

4In our implementation, we use up to 50 neighboring nodes to compute a
deep feature, downsampling if the number of neighboring nodes exceeds that
threshold. On average, two fan-out levels of neighboring entities are used for
feature computations.
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experimental spam detection models used whether a user
posts a URL as a feature; it turns out that this feature easily
becomes the dominant one in the model because spammers
are much more likely to include URLs in their posts than
benign users. However, it creates a huge number of false
positives as it classifies almost all users posting URLs as
abusive. In addition, direct features are easy for the attacker
to manipulate; once the attacker learns that “has posted URL”
is a feature, they can switch from directly posting URLs to
putting URLs as overlay in a photo in order to avoid detection.

5.4 Feature modification

As adversaries adapt and as we gain new insights about their
behavior, we will wish to add new features to DEC and/or
retire poorly performing features to save computation cost.
There are two issues to consider when modifying features.
The first is the influence on the current detection model. Once
we add or remove any feature, the classification result from
the original DEC model will be influenced as the model is still
trained using the original list of features. Our solution is to
split the feature logging into two pipelines: experimental fea-
tures and production features. We can log (or not log) newly
added (or removed) features into the experimental group, from
which we can train a new model. Meanwhile, the production
classifier still uses the production list of features. When the
new model is pushed to production, we switch the experimen-
tal feature set into the production pipeline.

A second problem with adding features is the computa-
tional cost of re-computing across the entire graph. When
we add a new direct feature to an entity A, it not only in-
fluences A, but also all the connected entities because they
use features from A to calculate their own deep features. Con-
versely, most direct features have multiple dependent deep fea-
tures, and multiple levels of fan-out can easily require the re-
computation of the whole feature space when a single feature
is added. For example, DEC needs to extract new_feature
from all of the friends of friends in order to compute 75th per-
centile, p75(friends.friends.new_feature). Traversing
through other features along with friends ultimately results in
re-extracting features of any active entity. To limit the impact
of the re-computation overhead, we define isolated universes
of features. The old and new versions of features will run in
parallel universes, with existing models using the old universe
of features, until feature generation for the new universe is
complete. At that point the functionality of the old universe
is subsumed, and it can be discarded as new models will be
trained using the new universe of features.

Again referring to Figure 2, we see the potential compu-
tational impact of feature changes. In this example a change
or addition of a new direct feature with dependent deep fea-
tures has exponentially more dependent computations than
the direct feature.
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Figure 3: MS-MTL model training flow. Stage 1 uses the
raw deep features with low precision labels to train a multi-
task deep neural network. By extracting the embedding from
the last hidden layer of the deep neural network, we train
dedicated GBDT models for each task in stage 2 with human
labeled data.

6 Methods: Multi-Stage Multi-Task Learning
Multi-task learning [6] (MTL) is a type of transfer learn-
ing [41] used to improve model generalization. MTL trains
multiple related “tasks” in parallel using a single neural net-
work model. The core idea is that what the model learns for
each task can boost the performance of other tasks. In our
context of abusive account classification, we define “task” and
“label” as follows:
• A task refers to the classification of a specific category of

abusive accounts on an OSN (e.g., fake accounts, spam-
ming accounts).

• A label of a training sample is a boolean value indicating
whether or not the sample falls into an abusive account
category. Each training example has multiple labels, one
for each task. This multi-label is represented by a vector of
boolean values.
As a concrete example, if we take four tasks in DEC model

training to be classifying fake, compromised, spamming, and
scamming accounts, the label vector of one account might
be [1,0,0,1]. This vector indicates the account was identi-
fied as fake and carrying out scams, but is not identified as
compromised or spreading spam.
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6.1 Motivation
We employ a multi-stage framework to detect abusive ac-
counts on Facebook. Our framework addresses three key
challenges in abusive account classification: simultaneously
supporting a variety of abuse types, leveraging a high-
dimensional feature space, and overcoming a shortage (rela-
tive to billions of accounts) of high quality human labels.

First, since there are many different ways in which an ac-
count can be abusive, we use different tasks to represent dif-
ferent sub-types of abuse, and multi-task learning to increase
the amount of information encoded in the model. The under-
lying assumption is that the features distinguishing abusive
accounts from benign ones are correlated between abuse types.
As a result, the knowledge learned for one abuse type can be
beneficial for determining other abuse types because an ac-
count exhibiting one abuse type is more likely to show other
abusive behaviors. As compared with splitting labeled data
based on abuse types and training a separate model for each
type, multi-task training gives us a full picture of the account
by collectively looking at all associated abusive behavior. We
expect that this knowledge sharing across tasks will allow us
to achieve better prediction accuracy using multi-task learn-
ing, especially for smaller tasks.

Second, the multi-stage framework addresses the “curse of
dimensionality” [23] by reducing the high-dimensional raw
feature vector to a low-dimensional representation. Specifi-
cally, our two stages of training reduce the number of features
from more than 104 (raw deep feature space) to around 102

(learned low-dimensional representation space). We achieve
this reduction by using the embedding from the last hidden
layer of the multi-task deep neural network as input features
for the second stage of training.

Finally, a practical engineering problem is that human la-
beled data is very expensive, and particularly so in the domain
of account labeling. In order to label an account as abusive
or benign, a human reviewer needs to look at many aspects
of the account and consider multiple factors when making a
decision. On the other hand, we have a large amount of lower-
confidence labeled data in the form of machine-generated
labels. This scenario is ideal for multi-task leaning as it has
proven to be successful to extract useful information from
noisily labeled data [52].

6.2 Training Data Collection
We have two sources of data labels on abusive accounts in
DEC. The first consists of human reviewers, who are shown
hundreds of signals from each account and asked to provide a
judgment on whether the account is abusive. Labels provided
in this manner have high accuracy, but are also computation-
ally expensive, and therefore can only be obtained in low
volume (relative to the billions of accounts on Facebook).

The second label source consists of automated (non-DEC)
algorithms designed to detect abusive accounts, as well as user
reported abusive accounts. These algorithms may be focused

on a specific attack or abuse type, or may be previous versions
of global abuse detection models. We consider the accounts
identified by these algorithms to be approximately labeled
abusive accounts. We then split the labels into different tasks
based on the type of abuse per each account. To obtain approx-
imately labeled non-abusive accounts, we randomly sample
accounts that have never been actioned on. Our approximate
labels have lower precision than human reviewed data, but are
much cheaper to obtain and can be obtained in high volume.
For example, in our evaluation the training dataset has over
30 million approximate labels and only 240,000 human labels
(Table 3).

While 30 million labels may seem significant, it represents
less than 2% of the billions of accounts on Facebook. Thus,
any adversary attempting a poisoning attack [21, 36, 47] on
the training data would need to create thousands of accounts
in order to ensure that some of them were sampled for our
training set as negative examples (and tens of thousands if
trying to poison the second stage). On the other hand, the fact
that there are millions of negative samples implies that any
one account cannot have outsize influence on the model, thus
increasing the required attack size even further. Such large
attacks are easy for both rule-based systems and human re-
viewers to detect and label, and thus the adversary’s intention
of poisioning the training set will be foiled. Furthermore, even
if somehow the adversary obtains enough accounts to poison
the training process, they will need to manipulate the features
on these accounts to produce very specific values, which (as
discussed in Section 5.1) is difficult to achieve with our “deep
feature” architecture.

To provide insight into the reliability of this approach, we
took a random sample of approximately labeled accounts
and sent them through the manual review process described
previously. In those experiments the approximate labeling
precision varied between 90% and 95%, indicating that the
approximate labels still provide significant discerning power.

6.3 Model Training Flow
Figure 3 shows the two stage training flow of the MS-MTL
framework. The first stage, trained on a large volume of low
precision data, learns the embedding of the raw features. We
then apply a transfer learning techique and use the embedding
along with high precision labels to train the second stage
model. The classification results are generated as the outputs
from the second stage.

6.3.1 First Stage: Low Precision Training

The objective of the first training stage is to reduce the high-
dimensional vector of aggregated raw deep features to a low-
dimensional embedding vector. This dimensionality reduction
is done through the training of a multi-task deep neural net-
work model [6] using our approximate label data. Each sample
in the training data has a vector of labels where each label
corresponds to a task, and each task corresponds to classifica-
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tion of a sub-type of abusive accounts on Facebook. After the
training has converged, we take the outputs of the last hidden
layer of the neural network as the learned low-dimensional
embeddings.

For our implementation, we use a neural network model
with 3 fully connected hidden layers having 512, 64, and
32 neurons respectively. For each task, the model outputs a
probability using a sigmoid activation function. The inputs
are normalized using a Box-Cox transformation. We trained
the model using PyTorch [42] for an epoch using per-task
binary cross entropy and an Adagrad optimizer [11], with a
learning rate of 0.01.

6.3.2 Second Stage: High Precision Training

We leverage a technique from transfer learning [41] and ex-
tract the last hidden layer’s output from the first stage model
as the input for the second stage. We train the second stage
(GBDT model) with high precision human-labeled data to
classify abusive accounts regardless of the sub-types of vio-
lations. The scores output by the GBDT model are the final
DEC classification scores.

Our implementation of the GBDT model uses an ensemble
of 7 trees with a maximum depth of 4. We trained the model
with a company-internal gradient boosting framework similar
to XGBoost [56], using penalized stochastic gradient boosting,
with a learning rate of 0.03 and a feature sampling rate of 0.2.

7 Evaluation
In this section we evaluate the performance of our MS-MTL
approach and the DEC system as a whole. Specifically we
analyze three abusive account models:
1. A behavioral-only model, which represents traditional de-

tection techniques employed by OSNs;
2. DEC as a single multi-task neural network (“Single Stage,”

SS), and
3. DEC with MS-MTL.
We performed our evaluation on active accounts on Face-
book. These accounts have already gone through multiple
early-stage security systems such as registration or login-time
actioning, but have not yet gone through full behavioral (i.e.,
activity- and content-based) detection. We also investigate
adversarial adaptation, in particular looking at the stability of
DEC’s precision and recall over time.

7.1 Datasets
Table 3 summarizes the dataset used for our experiments and
evaluation of DEC.

Training Data. We test DEC’s performance on production
Facebook data. We consider four types of abusive accounts
(tasks) in our MS-MTL implementation: fake, compromised,
spam, and scam. We split the abuse types into these four differ-
ent categories for two reasons. First, they are violating differ-
ent policies of Facebook, which causes the detected accounts

Table 3: Datasets: Number and composition of labels used
for our training and evaluation. The longitudinal dataset is
measured in # of samples per day.

Training
Dataset Label Type Training

Stage # Samples

Fake Approximate First 3.0×107

Comp. Approximate First 7.8×105

Spam Approximate First 6.2×105

Scam Approximate First 6.2×105

Benign Approximate First 2.6×108

Abusive Human Second 1.2×105

Benign Human Second 1.2×105

Evaluation
Dataset Label Type Evaluation

Mechanism # Samples

Abusive Human Offline 3.0×104

Benign Human Offline 3.0×104

Longitudinal Human Online 2.0×104/day

to be actioned on by separate enforcement systems, each em-
ploying distinct appeals flows. Second, the positive samples
of different abuse types are not homogeneous by nature. For
example, fake accounts are largely driven by scripted creation,
while compromised accounts usually result from malware or
phishing. The behavioral patterns and social connections of
these accounts are distinctive for each abuse type, lending
themselves well to different “tasks” in our formulation.

We maintain separate datasets of approximate (lower-
precision) and human labels. The quantity of approximate
labels is significantly larger than human labels. The first train-
ing stage uses four approximate datasets of abusive accounts
and one of benign accounts, while the second stage requires
only human-reviewed accounts labeled as abusive or benign.
The approximately labeled data comes from three sources:
1. User reports: Users on Facebook can report other users

as abusive. This source is noisy [19], but appropriate as
low-precision labels for the first stage of training.

2. Rule-based systems: Outside of DEC, there are other
existing enforcement rules on Facebook. We take users
caught by these enforcements, categorized by the type of
abuse, as an additional approximate label source. Some
examples of users labeled by rule-based systems include:
• Users sending friend requests too quickly;
• Users with multiple items of content deleted by spam-

detection systems;
• Users distributing links to known phishing domains.
In total, rule-based systems account for more than half of
our abusive account labels.

3. Discovered attacks: It’s common to have “waves” of
scripted attacks on OSNs, such as malware or phishing
attacks. When Facebook notices such a wave they can
identify a “signature” for the accounts involved and use
the signature as an approximate label for our first stage.
These discovered attacks comprise approximately 10% of
our abusive account labels.

All of the above sources provide noisy, low-precision abuse
data. While inappropriate for full system training, they are apt
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for the first stage of training. For the first stage, we construct
a set of benign users by randomly sampling active users and
excluding those contained in approximate abuse dataset.

In contrast, we generate training data for the second stage
by having human labellers employed by Facebook manually
review randomly sampled users on the platform. Accounts
labeled as abusive are used as positive samples for training,
and accounts labeled as benign are negative samples.

Evaluation Data. To evaluate DEC’s performance, we create
an evaluation dataset of accounts by sampling active users
from Facebook. These are users that have already passed
through several early-stage abuse detection systems, and as
such contain the hardest abusive accounts to classify. We per-
form manual human labeling of a large number of randomly
selected accounts using the same methodology and process
that Facebook uses for ground truth measurement. We then
randomly select 3×104 accounts labeled abusive and 3×104

accounts labeled benign for offline evaluation.

7.2 Model Evaluation
We use three different models to evaluate the performance of
our DEC approach (single stage and with MS-MTL) both in
isolation, and in comparison to traditional techniques. Note
that the objective of DEC is to identify accounts committing
a wide spectrum of abuse types. This approach goes beyond
traditional Sybil defense techniques which primarily focus on
detecting fake accounts.

A summary of these models, their training data, and their
evaluation data can be found in Table 4. The three models we
compare are:
1. Behavioral: This GBDT model classifies accounts based

only on the direct behavioral features of each account (e.g.,
number of friends), and outputs whether the account is
abusive (regardless of the specific abuse type). Thus, this
model does not use deep features and is not multi-task.
Since the number of behavioral features is relatively small,
we train the model with the human labeled dataset. This
model is representative of traditional ML based detection
techniques used in OSNs, similar to the system described
by Stein et al. [48]. By operating on an evaluation dataset
drawn from active accounts on Facebook that have already
undergone early-stage remediation, adding this behavioral
(later-stage) system is representative of an end-to-end so-
lution. We employ a GBDT architecture with an ensemble
of 200 trees of depth of 16, each with 32 leaf nodes.

2. DEC-SS: This model uses the DEC approach outlined in
this paper to extract deep features, but does not leverage the
MS-MTL learning approach. A single deep neural network
model is trained by combining all the approximate data
across multiple tasks. If a user is identified as violating
by any one of the included tasks, we consider this as a
positive sample. Because of the huge number of features
extracted by DEC, the quantity of human labeled data is
too small to be used for training.

Figure 4: Comparison of ROC curves for different models
on evaluation data. Both DEC models (single stage and with
MS-MTL) perform significantly better than the behavioral
model at all points in the curve.

3. DEC-MS-MTL: This is is the complete end-to-end frame-
work and model described in Section 6. It combines the
DEC-only approach with MS-MTL.

Outside of this evaluation section, references to DEC without
a MS-MTL or SS qualifier refer to DEC MS-MTL.

7.3 Performance Comparisons
We compare various metrics based on the results of above
three models.

7.3.1 ROC Curves

Figure 4 examines the ROC performance of all three models.
ROC curves capture the trade-off in a classifier between false
positives and false negatives. For all operating points on the
curve, the DEC models (both MS-MTL and SS) perform
significantly better than a behavioral-only approach—by as
much as 20%, depending on the operating point. From a ROC
perspective, both DEC models perform similarly.

While ROC curves are important measures of the effective-
ness of models, they are inherently scaleless, as the x-axis
considers only ground-truth negatives and the y-axis considers
only ground-truth positives. If the dataset is being classified is
imbalanced, as is the case with abusive accounts (there are sig-
nificantly more benign accounts than abusive accounts), ROC
curves may not capture the actual operating performance of
classification systems—particularly precision, a critical mea-
sure in accessing abuse detection systems.

7.3.2 Precision and Recall

Figure 5 compares the precision and recall of the models.
We find the behavioral model is unable to obtain precision
above 0.95 and has very poor recall throughout the precision
range. Both DEC models perform significantly better than the
behavioral model, being able to achieve a higher precision
and have significantly higher recall at all relevant operating
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Table 4: Comparisons of the three evaluation models’ type, training features, training data, and evaluation data.

Name Model Training Features Training Data Evaluation Data
Behaviorial GBDT Account behavior features (∼ 102) Human labels Human labels
DEC- SS Multi-Task DNN DEC deep features (∼ 104) Approximate labels Human labels

DEC- MS-MTL Multi-Task DNN + GBDT DEC deep features (∼ 104) Approximate labels+human labels Human labels

Figure 5: Comparison of precision vs recall curves for dif-
ferent models on our evaluation data. Both DEC models per-
form significantly better than the behavioral model, and the
DEC-MS-MTL has higher recall across the entire operating
space. This evaluation is over accounts that have already gone
through several stages of security evaluation, and as such this
population represents the hardest accounts to classify. Given
the difficult classification nature of this sub-population, such
recall performance is considered excellent by Facebook.

regions. DEC with MS-MTL significantly improves the sys-
tem recall over single stage DEC at high precision operating
points, improving by as much as 30%.

We note that this evaluation is over accounts that have
already gone through other security classifications such as
registration time or login-time remediation (i.e., the hardest to
classify accounts). As such, the overall recall level is expected
to be lower than that of a system which operates on all active
accounts (Section 7.4).

DEC with MS-MTL’s improvement in recall over behav-
ioral models makes it particularly attractive in a real world
operating environment where recall over hard to classify ac-
counts is an important operating characteristic.

7.3.3 Quantiative Assessment: Area Under the (AUC)
Curve and Precision / Recall

Table 5 shows a comparison of precision, recall, and ROC
performance between the three models. ROC performance
is calculated as the total area under the curve (AUC). Preci-
sion is fixed at 0.95, a common operating point for assessing
performance. The behavioral model is unable to achieve a pre-
cision of 0.95 at any recall, and is excluded. We find that while

Table 5: Comparison of the area under the curve (AUC) and
recall at precision 0.95 for different models on evaluation data.
The DEC with MS-MTL model achieves the best result by a
significant margin, a nearly 30% absolute improvement. The
behavioral model is unable to obtain precision 0.95.

Model AUC Recall @ Precision 0.95
Behavioral 0.81 NA
DEC- SS 0.89 0.22
DEC- MS-MTL 0.90 0.50

DEC both single stage and with MS-MTL have similar AUC
performance, adding MS-MTL more than doubles the model
recall, increasing it from 22% to 50%. This increased perfor-
mance, both over behavioral and over DEC without MS-MTL,
enables significantly better real-world impact when deployed
in production.

7.4 Results In Production Environment
Building on our design and evaluation of DEC (with MS-
MTL), we deployed the system into production at Facebook.
The system not only identified abusive accounts, but also trig-
gered user-facing systems to take action on the accounts iden-
tified. To assess the model’s real-world impact and longevity,
we evaluate our system in production by looking at the stabil-
ity of precision and recall over time.

Precision Over Time. Figure 6 examines the 3-day moving
average of the precision of our DEC with MS-MTL system
in production at Facebook. As with our prior evaluation, we
obtain ground truth for our measurements by relying on man-
ual human labeling of a random sample of accounts classified
as abusive by DEC. We find that the precision of the system
is stable, with the precision never dropping below 0.97, and
frequently being higher than 0.98.

Recall Over Time. We examine the stability of our produc-
tion DEC-MS-MTL model’s recall by considering its false
negative rate (FNR), where FNR= 1−recall. Using a longitu-
dinal sample of 2×104 users randomly chosen and manually
labeled each day, we compute an unbiased FNR statistical
measure of the volume of abusive accounts on Facebook, re-
gardless of direct detection. This measure is denoted as the
“prevalence” of abusive accounts and can be thought of as
the false negative rate of all abusive account detection sys-
tems (including DEC) combined. If we add to the prevalence
measurement the number of abusive accounts caught by DEC
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Figure 6: Precision over time: 3-day moving average of de-
ployed (DEC-MS-MTL) model precision on live Facebook
production data, spanning one month. Precision is stable,
never decreasing below 0.97. The y-axis is truncated.

specifically (and not other detection systems), we obtain an
estimate of what the prevalence of abusive accounts would
have been in the absence of DEC.

Figure 7 plots the observed prevalence of abusive accounts
(with DEC deployed) and inferred prevalence without DEC,
over the period of a month. A loss in DEC’s recall (equiva-
lently, an increase in DEC’s FNR) would manifest as either
an increase in overall abusive account prevalence, or a de-
crease in the power of DEC compared to non-DEC methods
(a decrease in the difference between the two measures). We
observed neither of these phenomena over our one-month ex-
periment, indicating that DEC’s recall did not meaningfully
shift during this period and suggesting that there was not
adversarial adaptation to DEC.

Before DEC’s launch, Facebook reported instances of ad-
versaries adapting within hours to new detection systems;
since the advent of DEC there have been no such reports.
Our hypothesis is that the “deep feature” architecture of DEC
makes the system more resistant to adversarial adaptation
than other abusive account detection systems. As discussed
in Section 5.1, an adversary wishing to manipulate a user
feature aggregated through the graph must control that feature
on all of the relevant entities connected to the original user.
When we apply this reasoning to the multitude of different
entity associations — including but not limited to user friend-
ship, group membership, device ownership, and IP address
appearance — we are drawn to the conclusion that manipu-
lating many such features would be far more expensive for
an attacker than manipulating “direct” user features such as
country, age, or friend count.

Since deployment, DEC has become one of the key abusive
account detection systems on Facebook, where it has been
responsible for the identification and deactivation of hundreds
of millions of accounts. Over our evaluation period the av-
erage estimated prevalence without DEC would have been
5.2%, while the average observed volume of abusive accounts

Figure 7: Recall over time: DEC defense over a 30-day win-
dow, using 3-day moving averages. The green line is the
observed volume (as a percent) of abusive accounts on Face-
book, and the red marked line is the volume of accounts taken
down by DEC. The blue line is the sum of the other two
and estimates what the volume of abusive accounts would
have been in the absence of DEC; the gray shaded area thus
represents the inferred impact of DEC.

Table 6: Area under the curve (AUC) and recall at precisions
0.95 and 0.99 for DEC over a random sample of all accounts
on Facebook.

Population AUC Recall @ Prec. 0.95 Recall @ Prec. 0.99
All accts. 0.981 0.981 0.955

on Facebook was 3.8%— an improvement of 27%.

DEC Over All Accounts. Our evaluation of DEC thus far has
focused on the hardest types of abuse to classify—accounts
that were not identified by other production abuse detection
systems. A separate question is how effective could DEC be
at identifying all abusive accounts, including those caught
by these other systems. To answer this question we evalu-
ated DEC over 1.6×104 active accounts sampled at random
from the entire population of accounts on Facebook, includ-
ing those that had been detected as abusive by other systems.
These accounts were definitively labeled by expert human
labellers and used as ground truth for our evaluation. Table 6
shows the performance of DEC across this population of all
accounts. DEC performs well over this population, with an
AUC of 0.981, recall at precision 0.95 of 0.981 and recall at
precision 0.99 of 0.955. As expected, both the AUC and recall
at fixed precision are significantly higher on the full popula-
tion than on the sub-population of accounts not detected by
other systems (Table 5).

8 Discussion and Lessons Learned
After more than two years of deployment at Facebook, we
have learned multiple lessons and identified several limita-
tions from developing and using DEC.
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8.1 Reducing Computational & Human Load
It is computationally expensive to extract graph features for
all active users at the scale of Facebook. Given our current
implementation of feature extraction within two hops from
the target node in graph, for each user we might need to reach
out to hundreds or thousands of neighboring nodes in order
to extract all of their information and aggregate it back to
the target node. To mitigate this problem we have developed
caching strategies that reuse previous feature extraction re-
sults as much as possible. However, because many features
have time sensitivity, we still need to update and re-extract a
considerable amount of them at each reclassification.

The computational load of DEC is high—equivalent to
0.7% of global CPU resources of Facebook. However, the
deployment of DEC actually reduced global CPU usage of
Facebook. DEC achieved this counter-intuitive result by iden-
tifying and removing such a large volume of abusive accounts
that the combined CPU usage of those abusive accounts more
than accounted for the computation required for feature ex-
traction, training, and deployment of DEC.

DEC also greatly reduced human costs, in terms of human
review resources that would have been needed to evaluate and
take down abusive accounts manually. DEC’s deployment
reduced the total review resources needed for abusive account
detection by between 15% and 20%.

8.2 Segmentation and Fairness
One key finding is that a single-task classifier performs differ-
ently across different segments within the task. For example,
if we segment accounts by the self-reported age of their own-
ers, an abusive account classifier might show a higher false
positive rate on one age segment than others. Similarly, the
performance might vary over different geographies, as we
are building a single model to fit a global product that may
be used differently across different cultures. Such variation,
which can be expected across such a large and heterogenous
user base, may be interpreted as the model treating some
groups of people unfairly relative to others.5 In the data set
used for this paper we were not able to find any segments
on which classifier performance differed to a statistically sig-
nificant extent, but it is possible that with retraining and/or
different segmentation such unfairness may arise. As a result,
we have proactively considered several measures to reduce
variation across different segments.

Our key insight is that segmentation effects are highly cor-
related with bias in the training data. Suppose for example
that we use the account owner’s age as a feature, and that the
owners of abusive samples in the training data are younger on
average the owners of non-abusive samples. In this case, if we
do not adjust the proportions of different segments in our train-
ing data, the classifier may reach the conclusion that accounts

5Note that the assessment of “fairness” will depend on the metric used,
and one may get different results when using, for example, accuracy vs. pre-
cision vs. false positive rate.

owned by young people are more likely to be abusive.
As a first step towards preventing such bias, we have re-

moved from the model all “direct” user demographic features,
including age, gender, and country. While these features could
be helpful in predicting abuse, they could easily introduce un-
fairness in the model as in the age example above — we don’t
want to penalize younger benign users just because attackers
usually choose to set their fake accounts to have a young age.

The next approach we considered is to sample the labeled
data in order to create a training set that reflects overall OSN
distributions as closely as possible. In ongoing work, we are
experimenting with training DEC using stratified sampling
based on attack clustering, in particular downsampling large
clusters so as to minimize the influence of a single attack on
the ultimate model. This approach would make sure that a
large attack from a given user demographic does not teach
the model that most users from that demographic are abusive.
However, stratified sampling becomes prohibitively costly as
we try to match the distribution of more and more segments.
In addition, as we add more dimensions the segments get
smaller, and statistical noise soon introduces enough error to
outweigh the precision gains from sampling.

A final approach is to split particular segments out and
create dedicated tasks in the MS-MTL framework for them;
however, this approach requires us to collect sufficient training
data for each segment, and the maintenance cost increases
with the number of models trained. Instead of training and
maintaining multiple models, Facebook has chosen to monitor
specific high-profile segments for false positive spikes and
address any issues by tuning the overall model to reduce
segment-specific false positives.

8.3 Measuring in an Adversarial Setting
Since abuse detection systems inherently operate in an adver-
sarial environment, measuring the impact of system changes
is a particularly difficult problem. A common adversarial
iteration looks like:
1. The attacker finds a successful method to abuse Facebook.
2. Facebook adjusts its detection system and mitigates the

attack.
3. The attacker iterates until they either achieve (1) again, or

the resource cost becomes too high and they stop.
Assuming constant effort on the part of the attacker and

Facebook, the above cycle eventually settles on an equilib-
rium. Because of this cycle, it is difficult to properly measure
the effect of our models using A/B tests during deployment.
If our experiment group is too small, we never reach step 3
because the attacker has no incentive to change. Our metrics
might look good in the experiment group, but we will hit
step 3 when we launch more broadly and performance will
decline.

One way to mitigate this problem is to add a “holdout
group” to feature launches. The holdout group is a random
sample of users that are predicted by the model to be abusive.
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Instead of acting to block these accounts immediately upon
detection, we stand back and confirm the abuse happened as
expected before enforcing on these users. Such holdouts help
us to more accurately measure the precision of our classifier,
but must be carefully weighed against the potential impact, as
holdouts can lead to further abuse. For this reason, holdouts
are not used for all types of abuse.

8.4 Adversarial Attacks on DEC
An attacker may attempt to poison the first stage of low-
quality labels by creating numerous colluding accounts that
seek to be labelled benign by the rule-based detection systems.
Given the scope of DEC’s training data and the relatively low
sample rate, it would be extremely difficult for attackers to
generate such accounts at a scale that would significantly im-
pact the trained model (Section 6.2), especially given that
other (non-DEC) systems exist specifically to limit the cre-
ation of fake accounts at massive scale.

An attacker may attempt to evade the classifier by creating
large groups of fake accounts connected to each other so that
they can control all of the deep features. This subgraph would
have to either be isolated from the rest of the friend graph
(which is itself suspicious) or have a reasonable number of
connections to the main graph. In the latter case, since DEC
operates on second-order connections, almost all of the DEC
features would include data from real accounts outside the
adversary’s control. In addition, while the adversary controls
the fake accounts’ behavior, they don’t know how a similar
set of connected legitimate users behaves, and the coordinated
activity of the fake accounts would be detected as anomalous
by DEC.

An attacker could also attempt to trick DEC into misclas-
sifying a benign user as abusive, based on features of its
neighbors that the victim has no control over. For example,
an attacker could create a subgraph of abusive accounts as
above and attempt to friend a victim using these accounts. If
the victim accepts one or more friend requests, they embed
themselves in the abusive sub-graph, which could cause DEC
to incorrectly act on the victim. This “forced-embedding” at-
tack is also challenging to execute. First, “attempted” links
between entities (e.g., unresolved or denied friend requests)
are not features in DEC. Second, a single bad edge between
the victim and an abusive sub-graph is insufficient to cause
a false classification. A victim would need to be deceived
numerous times for there to be a risk of misclassification.
Finally, DEC-identified accounts are given the opportunity to
complete challenges or request human review as a fail-safe to
guard against incorrect classification [30].

8.5 Limitations and Future Directions
While DEC has been highly effective at detecting abusive
accounts in practice, its design offers several opportunities
for improvement:
• DEC is computationally expensive, particularly due to its

use of deep features. However, in Section 8.1 we discussed
how this high computational cost is actually balanced by
resource savings from identifying more abusive accounts.
Reducing the computational cost further is an active area
of work that is receiving at least as much attention as im-
proving model quality.

• Intuitively, DEC’s classifications are based on an account’s
position and connections within the Facebook graph. Ac-
counts that exhibit low levels of activity or connections
provide fewer signals for DEC to leverage for inference,
limiting its effectiveness. However, even if such accounts
are abusive, they inherently have less impact on Facebook
and its users. We are currently exploring approaches to in-
clude features that better capture these low-signal accounts.

• DEC’s machine learning model lacks interpretability, as
it relies on a DNN to reduce the high-dimensional space
of deep features into the low-dimension embedding used
for classification decisions. This characteristic makes it
difficult to debug and understand the reasoning behind
DEC’s decisions. Making the model interpretable is an
active area of research.

• DEC’s approach of aggregating data from many users to
produce features for classification is less sensitive to out-
liers than an approach of using direct features. As a conse-
quence, DEC may be less discriminative of extreme feature
values than other model families. We have taken a “defense-
in-depth” approach to address this challenge, as extreme
outliers can be captured quite effectively by manual rules.
It still remains an open question to address such outliers
within the DEC framework.
• DEC, like other supervised or semi-supervised machine

learning systems, is heavily dependent on the quality of its
training data labels. Adversaries that manage to induce in-
accurate human labeling at scale may be able to manipulate
or interfere with DEC’s classifications. We are constantly
working to improve our labeling process to address any
observed or potential limitations.

Even with these limitations, our evaluation on production data
at Facebook indicates that DEC offers better performance than
traditional detection approaches.

9 Conclusion
We have presented Deep Entity Classification (DEC), a ma-
chine learning framework developed to detect abusive ac-
counts in OSNs. Our framework addresses two problems in
the existing abuse detection systems: First, its “deep feature”
extraction method creates features that are powerful for classi-
fication and (thus far) show no signs of the adversarial adapta-
tion typical for account or behavioral features. Second, it uses
a novel machine learning training framework to leverage both
high-quantity, low-precision and low-quantity, high-precision
training data to improve model performance.

Our evaluation on production data at Facebook indicates
that DEC offers better performance than traditional detection
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approaches. Moreover, DEC’s performance is stable over time,
suggesting that it is robust to adversarial adaptation. During
DEC’s deployment for more than two years at Facebook, it
has detected hundreds of millions of abusive accounts. We
estimate that DEC is responsible for a 27% reduction in the
volume of active abusive accounts on the platform.
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