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Abstract—Content Delivery Networks (CDNs) are critical to
today’s Internet ecosystem for delivering rich content to end-
users. CDNs augment the Internet infrastructure by deploying
geographically distributed edge servers, which play a dual role in
CDNs: one as frontend interface to facilitate end-user’s proximal
access and the other as backend interface to fetch content from
origin servers. Previous research has well studied the frontend
interface of CDNs, but no active approach has yet been provided
to investigate the backend interface. In this paper, we first
propose an active approach to measuring the backend interface
of CDNs. Then, we present a large-scale measurement study to
characterize the backend interface for three CDN platforms, so
as to understand the CDN’s globally distributed infrastructure,
which is essential to its performance and security. In particular,
we discover the address space and operation patterns of the
backend interface of CDNs. Then, by analyzing the backend
addresses and their associated frontend addresses, we study their
geolocation association. Furthermore, we issue traceroutes from
origin servers to the backend addresses of the CDNs to analyze
their performance implications, and perform port scanning on
the backend addresses to investigate their security implications.

I. INTRODUCTION

Content Delivery Networks (CDNs) have been an integral
component of the Internet ecosystem. They deliver rich con-
tent to end-users and significantly improve the performance,
availability, and security of online services. CDNs have been
widely deployed in the past decade and will continue their
rapid growth in the future. According to the Cisco report [1],
52% of all Internet traffic was delivered by CDNs in 2016, and
the percentage is expected to increase to 70% by 2021. The
widely deployed CDNs and their high adoptions have been
reshaping the landscape of the Internet.

Technically, a CDN is a geographically distributed network
infrastructure with a large number of edge servers deployed
at multiple strategically chosen locations, a.k.a., Points of
Presence (PoPs). An edge server caches the requested content
and shares it with neighboring servers for future requests.
When a CDN service is enabled, an end-user’s request will be
redirected to one of the CDN’s distance-proximity edge servers
via the CDN load balancing system, and the cached content
will be served directly from the edge server without fetching it
from the origin server, which significantly reduces the end-to-
end latency. Furthermore, when the origin server is temporarily
disconnected from the Internet (e.g., under maintenance), the
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edge server can still serve the cached content so that it largely
mitigates the service interruption.

A CDN can be seen as a middle-box between the content
origin and end-users. Its frontend interface handles the requests
from end-users, while its backend interface is responsible for
fetching the requested content from the origin. Normally, the
backend IP addresses are hidden from end-users. A prior study
[2] examined the backend interface of one commercial CDN
by analyzing its edge servers’ logs. However, it is usually
difficult to gain access to the edge servers’ logs of multiple
commercial CDN providers, and thus an active approach to
studying the CDN backend interface is needed. Other existing
CDN measurement studies [3]—-[6] have explored the server de-
ployment and performance of CDNs, including address space,
geographical distribution, end-to-end latency, and availability,
but these studies are limited to the frontend interface of
CDNs only. However, to fully understand a CDN’s globally
distributed infrastructure, it is vital to characterize the backend
interface of CDNs.

In this paper, we first design an active approach to dis-
covering the backend interface of the CDN platform. The
basic idea is to first collect the globally distributed fron-
tend addresses and leverage them to uncover their associated
backend addresses. In particular, we take advantage of the
globally distributed DNS open resolvers to resolve the domain
names of CDN customers. Since a CDN typically returns its
frontend addresses based on the location of the open resolvers,
we collect the globally distributed frontend addresses from
the DNS responses. After that, we intentionally send HTTP
requests to these frontend addresses and search for different
and non-existent content of a website under our control. Such
requests would force the CDN to fetch the content from our
origin server so that we can collect the backend addresses as
well as the associated frontend addresses.

We then present a comprehensive measurement study on the
backend interface of three leading CDNS, including Cloudflare,
CloudFront, and Fastly. In total, we collect 13,433 backend
addresses in three months. In contrast to the large number
of frontend addresses, the backend addresses are limited.
In addition, the three CDN platforms show a significant
difference in terms of the operation patterns of the backend
addresses. Furthermore, we determine the geolocation of a
backend address and its associated frontend addresses at the
PoP level and present their geolocation association.



Next, we analyze the Round-Trip Times (RTTs) and Au-
tonomous System (AS) paths between origin servers and CDN
backend interfaces and explore their performance implications.
We observe that the origins located at EC2’s North America
regions have the shortest average RTTs and that the majority
of the AS path lengths are less than 4 after the removal
of intermediate IXP ASes. Finally, we examine the port
management of backend addresses and analyze its security
implications. What we found is that some of the backend
addresses of Fastly and CloudFront have their ports HTTP/80
and HTTPS/443 open to the public; we also noted that these
backend addresses are allowed to directly process the client’s
HTTP requests and fetch the content for a client.

We summarize our major contributions as follows:

e We design an active approach to discovering the back-
end interface of CDN platforms, and such a discovery
provides a more comprehensive understanding of CDN’s
infrastructure and deployment.

e We present a large-scale measurement to characterize
the operation patterns of the backend interface of three
large CDN platforms. Moreover, by analyzing backend
addresses and their associated frontend addresses, we
reveal their geolocation association.

e We issue traceroutes from origin servers to CDN back-
end interfaces and analyze their performance implica-
tions in terms of RTT and AS path length. Furthermore,
we study the port management of backend addresses
by probing the open ports. Based on the measurement
results, we analyze the backend accessibility and its
security implications.

The remainder of this paper is organized as follows. Section
I introduces the background of CDNs. We describe our
active approach in Section III and discuss our measurement in
Section IV. The measurement results are analyzed in Section
V. We explore the performance and security implications of
the backend interfaces in Section VI. We survey the related
work in Section VII, and finally, we conclude the paper in
Section VIIIL.

II. BACKGROUND
A. CDN Overview

A CDN is designed to reduce the end-to-end latency of
fetching the content and lower the origin servers’ workload
burden. It works by caching and serving the content at its
geographically distributed edge servers, thereby improving the
performance and availability of online services that use CDNs.

Figure 1 illustrates how a CDN works. To enable a CDN
service, a website needs to delegate its domain to a CDN
by either changing its CNAME or NS record to a domain
controlled by the CDN. After that, when a client accesses the
website, it first resolves the domain name of the website to IP
addresses. With the domain delegation, the IP addresses will be
eventually provided by the CDN’s authoritative nameservers
(@®). We refer to these IP addresses as frontend addresses.
Then, the client sends its HTTP requests to one of the provided
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Fig. 1: CDN Illustration

frontend addresses to retrieve the web content (). An edge
server would process this request and check with other edge
servers to see if the requested content is cached (®). Assuming
that the content is not cached in the CDN, eventually one of
the edge servers would fetch the requested content from the
origin (@®).! We refer to the IP addresses that are used to fetch
the content from the origin as the backend addresses. Once the
edge server receives the content, it serves the content to the
client and caches it (® and ®). As a result, when other clients
request the same content, the cached content will be served
directly from the edge server without contacting the origin,
which significantly reduces the end-to-end latency of serving
the content and the workload at the origin.

Continuously evolving, CDNs have also begun to provide
security-related services in addition to content delivery. The
most representative service is the DDoS Protection Service
(DPS) [7]-[9]. As DDoS attacks have become more power-
ful, it is insufficient to defend against them using only the
traditional on-site protection systems. Having the feature of
a highly distributed network infrastructure and high network
capacity, a CDN becomes an ideal place to absorb a large
amount of DDoS attack traffic. With the high demand for
a dedicated DPS, the major CDNs have integrated the DPS
within their platforms, and the DPS has become one of the core
functions of CDNs. Furthermore, since a CDN acts as a reverse
proxy for its customers, it can inspect the traffic sent to and
from origin servers, even if the traffic is encrypted. With such
a capability, CDNs carry out their Web Application Firewalls
(WAFs) to block malicious web application traffic and stop
web attacks (e.g., SQL injection and cross-site scripting) at
the Internet edges.

B. CDN Load Balancing System

A CDN load balancing system redirects client requests to
their distance-proximity edge servers, and it can be divided
into two levels: PoP-level and server-level.

'Note that the edge server that receives the HTTP request and the edge
server that fetches the content from the origin could be the same physical
server, but with two logic interfaces (i.e., the frontend and backend interfaces).



1) PoP-Level Load Balancing: The PoP-level load balanc-
ing is used to balance the HTTP requests within a CDN’s
globally distributed infrastructure and redirect them to the
distance-proximity PoPs. There are two types of mechanisms
widely adopted in CDNs: DNS mapping [10] and anycast
routing [10], [11].

DNS Mapping. When a CDN’s authoritative DNS name-
server receives a DNS query searching for the A record of
its customer, it selects the distance-proximity PoP and replies
with the frontend addresses belonging to this PoP. Once the
client receives the DNS response, it sends its subsequent HTTP
requests to the replied frontend address, and hence the web
traffic is redirected to the distance-proximity PoP.

Anycast Routing. To enable anycast routing, BGP routers
in multiple PoPs announce the same set of IP prefixes to the
Internet so that addresses within those prefixes would have
multiple physical locations. By leveraging the BGP shortest
path routing, a packet with an anycast address will be routed
to its closest physical location. Consequently, the web traffic
will automatically be redirected to a distance-proximity PoP.

2) Server-Level Load Balancing: Within a PoP, it is critical
to evenly distribute the incoming requests to all edge servers.
To achieve this goal, CDNs normally take advantage of
the load balancers inside the PoP, since it is convenient to
obtain the real-time network information (e.g., traffic load and
ongoing connections) of the edge servers.”

For the TCP-based connections (e.g., HTTP connections),
the server-level load balancer must ensure that all packets
in the same connection are sent to the same edge server.
Forwarding packets to a different edge server may reset the
connection. Many CDNs achieve this by using flow hashing
techniques such as Equal-Cost Multi-Path (ECMP) routing
[13] and usually implement it as a software load balancer [14].
Typically, a flow hashing technique hashes the unique identifier
(e.g., four tuples) of the flows and forwards the packets based
on their hash value. The packets with the same hash value will
be forwarded to the same edge server.

Due to the existence of a load balancer inside the PoP,
packets with the same frontend address may not be redirected
to the same edge server. Thus, there is no one-to-one mapping
between a frontend address and an edge server.

[II. METHODOLOGY

In this section, we introduce our active measurement ap-
proach to studying the backend interfaces of CDNs. The key
idea is to collect the globally distributed frontend addresses
and leverage them to uncover their associated backend ad-
dresses.

A. Discovering Frontend Addresses

For CDNs that adopt DNS mapping, their DNS systems
return the frontend addresses based on the specific location
from which the DNS query is sent. Therefore, we leverage

2Note that Akamai completes the server-level load balancing in its DNS
mapping. [12]

open DNS resolvers located over the entire Internet to gener-
ate the geographically distributed DNS queries. Censys [15]
conducted an Internet-wide scan of DNS using Zmap [16]
once or twice a week. We take advantage of this passive
DNS dataset and extract the open resolvers from it.> Note that
the churn on open resolvers is significant [17], so we need
to regularly update the freshest open resolver list during the
measurement. Figure 2 illustrates our method of discovering
the frontend addresses. Specifically, we send the DNS queries
to the collected DNS open resolvers, trying to resolve the
domain names of CDN customers (@ and ). We use the
method presented in [9] to obtain a large number of CDN
customers. The nameservers of CDNs reply with the frontend
addresses based on the geolocation of the open resolvers, and
those open resolvers then relay the resolution result (& and
®). However, there is no guarantee that the frontend addresses
are active all the time or the DNS mapping system will
reply with all available frontend addresses in one experiment.
Also, the CDN providers may continuously assign new IP
addresses to the existing PoPs or add new PoPs to their
network infrastructures. Therefore, we update the frontend
addresses once a week during our experiment.

Collecting frontend addresses from anycast-based CDNs is
quite different. Due to the nature of anycast, those CDNs do
not respond to DNS queries based on the queries’ source IP
addresses. Instead, it returns one or more static A records for
each of the queried domain names. Therefore, we can collect
frontend addresses by using our local DNS resolvers, instead
of the distributed open resolvers. Besides, since the A records
are static, we only need a one-time experiment to collect the
frontend addresses.

Note that CDN customers may temporarily disable the CDN
services during the experiments. As a result, the IP addresses
provided by the authoritative nameserver of the CDNs may
have several other possibilities, such as the origin address
[9] or even a fake address. To validate whether the frontend
addresses belong to the CDN providers, we match them with
the IP ranges of CDNs to filter out the incorrect ones.

B. Discovering Backend Addresses

Backend addresses are used to fetch content from the origin
server. Only when the cache miss happens can we observe
the communications between the origin server and backend
addresses. Therefore, we intentionally create cache misses at
edge servers and collect the backend addresses at our origin
server. Figure 3 illustrates our approach to discovering the
backend addresses. First, we set up a web server as our origin
and sign up CDN services with our domain. Then, we directly
send HTTP requests to the frontend addresses and set our
domain as the Host header so that CDNs will be able to
process the requests (@). For CDNs with a DNS mapping
system, those HTTP requests can be delivered directly to all

3The scan sends DNS queries to the whole IPv4 address space and resolves
a domain controlled by Censys. Its authoritative nameserver always replies
with a fixed IP address. By matching this IP address with the DNS responses,
we can extract all of the open resolvers from the scan results.
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Fig. 2: Discovering Frontend Addresses

of their PoPs. However, for anycast-based CDNs, all requests
from one probing point will be routed to the PoP that is in
proximity to that probing point. Because it is usually difficult
to control sufficient probing points that are close to all of the
PoPs of a large CDN, we make our best effort to cover the
major vantage points on the Internet. To do so, we launch one
instance at each of the 15 EC2 regions [18] and measure the
PoPs of the anycast-based CDN that can be reached through
those EC2 instances.

Within our HTTP requests, we deliberately craft the re-
quested resources to ensure that requests always force the
edge servers to fetch the content from our origin server and
transmit the probing information to our origin server ().
Specifically, we embed the frontend address and a random
string into the name of the requested resource. Due to the
random string, each name of a requested resource is unique.
Thus, it is guaranteed that no requested resources are cached
in CDN edge servers, which means that edge servers must
fetch the content from our origin server. Consequently, HTTP
requests, including the backend addresses and the name of
requested resources, will be recorded by our origin server,
so we collect the backend addresses from our server log
file. More importantly, by extracting frontend addresses from
the name of requested resources, we uncover the address
mappings between the frontend and backend. Finally, our
origin server returns 404 Not Found error pages, since the
requested resources are not in the server (@ and @). We
observe that CDNs sometimes cache such error pages. Thus,
we customize these error pages with no message body to
minimize the impact upon our measurement.

C. Limitations

While our approach is able to measure the backend interface
of a CDN through its frontend interface, we cannot know the
internal structure of the CDN (e.g., how the frontend connects
with the backend). In addition, our approach cannot be applied
to the web service providers that also have their proprietary
content delivery infrastructures (e.g., Google and Facebook)
since our approach requires service signup. Moreover, as
previously mentioned, our approach requires a large number
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of globally distributed probes to view the whole platform
of anycast-based CDN providers. It is often challenging to
conduct a network probing in such a globally distributed
manner.

IV. MEASUREMENT

We apply our method to CDNSs to characterize their backend
interfaces. We first describe the CDNs we selected in our
measurement and their geolocation hints used for the later
analyses. Then, we present the datasets we collected in our
measurement.

A. CDN Providers

1) CDN Provider Selection: Our measurement focuses on
three CDN providers: CloudFront, Cloudflare, and Fastly. We
study these three CDNs with the following three considera-
tions. First of all, they are the key players in the CDN market,
since their market shares are ranked in the top 5 of CDN
providers [19]. Second, they provide free services for personal
usage. Some other top CDN providers, such as Akamai, only
provide their services for a business purpose, so we are not
allowed to sign up for their services. Third, all of their PoPs
are accessible to customers with a free plan, which gives us a
chance to assess their entire CDN platforms.

Among these three CDN providers, CloudFront and Fastly
leverage the DNS mapping system to reroute web traffic
to their distance-proximity PoPs, while Cloudflare adopts
anycast routing. As previously discussed, for the anycast-based
CDN, we measure the PoPs that can be reached through the
EC2 instances. We show the mappings from EC2 regions to
Cloudflare PoPs in Table 1. Note that the BGP routing path
(i.e., AS path) may change during our measurement, so one
EC2 instance may reach multiple Cloudflare PoPs at different
times.

2) Geolocation: To better understand the deployment of
the backend and its association with that of the frontend,
we determine the geolocation of the frontend and backend
addresses at the PoP level. There are some geolocation
databases (e.g., Maxmind [20]) that can convert an IP address
to its geolocation. However, previous studies [21], [22] have



TABLE I: Mapping from EC2 regions to Cloudflare PoPs

TABLE III: Frontend Addresses

TABLE II: Open Resolver Coverage

Regions Open Resovlers | Countries and Regions
Africa 0.8M 56
Asia 12.2M 50
Europe 2M 53
North America 1.1IM 39
Oceania 0.1M 24
South America 1.4M 14
Total 17.6M 236

demonstrated that geolocation databases have an acceptable
accuracy at only the country level and that it is not reliable
at the city level (i.e., the PoP level). Therefore, to achieve
our goal, it is insufficient to use these existing geolocation
databases. However, we observe that the three CDN providers
embed the PoP information into either their hostnames or
HTTP headers, which help us determine the geolocation of
the frontend and backend addresses with an accuracy of the
PoP level.

CloudFront embeds PoP information into the hostnames. By
conducting the reverse DNS lookup, we obtain all hostnames
of the frontend and backend addresses. CloudFront has 11
PoPs built inside its EC2 region while other PoPs are dis-
tributed across the world [23]. We refer to the former as an
EC2 PoP and to the latter as a non-EC2 PoP. For an address
from an EC2 PoP, its hostname includes an EC2 region code.
Therefore, we locate the address by checking the location of
the EC2 region. Similarly, CloudFront also embeds an airport
code in a hostname of an address from a non-EC2 PoP, which
reveals its geolocation.

We gather the geolocation information of Fastly and Cloud-
flare from HTTP headers. In particular, a Fastly edge server
appends its server ID into a self-defined HTTP header,
Fastly-FF [24], and the server ID has an embedded airport
code. As our HTTP request traverses through the Fastly edge
servers to our origin server, we can capture a server ID chain

EC2 Region EC2 Zone Cloudflare PoP Provider Addresses /24 Prefixes | Covered PoPs
Ohio us-east-2c IAD Cloudflare 97,829 1,869 1497
Virginia us-east-1b IAD CloudFront 124,105 1,346 102
California us-west-1c¢ SIC Fastly 10,938 188 48
Oregon us-west-2a SEA TNote that Cloudflare’s frontend addresses are anycast addresses an-
Mumbai ap-south-la BOM / MAA nounced from all of its PoPs. Theoretically, all PoPs can be reached from
Seoul ap-northeast-2c NRT those addresses. However, due to limited probing points, PoPs that can
Singapore ap-southeast-1b SIN be reached through our EC2 instances are listed in Table I.
Sydney ap-southeast-2b SYD / MEL
Tokyo ap-northeast-1a NRT TABLE IV: Frontend-to-Backend Address Pairs
Central ca-central-1b EWR ) Address Pairs
Frankfurt eu-central-1b FRA / PRG Provider Total Avg. per Experiment
Ireland eu-west-1b DUB Cloudflare M 147.6K
London eu-west-2a LHR CloudFront 2.5M 90.8K
Paris eu-west-3¢ €DG Fastly 168.8K 104K
Sdo Paulo sa-east-la GRU / EZE

from the Fastly-FF header. By extracting the first and last
server IDs, we obtain the geolocation of both the frontend and
backend addresses. Cloudflare embeds an airport code into a
self-defined HTTP header, CF-Ray, which identifies the PoP
from which the HTTP packet originates [25].

B. Datasets

1) Open Resolvers: As shown in Figure 2, the effectiveness
of collecting globally distributed frontend addresses in non-
anycast CDNs (i.e., CloudFront and Fastly) relies on the cov-
erage of open DNS resolvers. Due to the high churn rate, we
use the multiple snapshots from Censys to obtain the available
open resolvers. On average, each snapshot contains about 3.6
million open resolvers, and in total, we use approximately 17.6
million open resolvers distributed in 236 countries and regions
during the entire experiment period (Table II). The prevalence
and wide coverage of open resolvers enable us to discover the
entire frontend interface of CDNs worldwide.

2) Frontend Addresses: The dataset of collected frontend
addresses is presented in Table III. In total, we obtain about
100K frontend addresses for Cloudflare and CloudFront (more
than 1.8K and 1.3K /24 prefixes, respectively), and 10K
frontend addresses (188 /24 prefixes) for Fastly.* We leverage
these wide range frontend addresses to discover the backend
addresses.

3) Frontend-to-Backend Address Pairs: We issue HTTP re-
quests to the frontend addresses to collect the CDNs’ frontend-
to-backend address pairs at our controlled origin server, as
described in Section III. Specifically, for CloudFront and
Fastly, we issue one HTTP request to every frontend address.
For Cloudflare, we send HTTP requests to 10,000 randomly
chosen frontend addresses at each PoP. In total, we collect
more than 7.6 million address pairs, which are listed in Table
IV, through 35 measurement experiments done in a period of
three months.

“Note that the number of the frontend addresses is not equal to the number
of edge servers, due to the server-level load balancing described in Section
1.



TABLE V: Backend Addresses

Provider Addresses
Total | Avg. per Experiment | /24 Prefixes
Cloudflare | 11,602 1,803 78
CloudFront 863 42 76
Fastly 968 931 48

V. MEASUREMENT RESULTS AND ANALYSES

In this section, we present our measurement results and
analyses. We first analyze the address space and operation
patterns of the backend interface in CDNs and then discuss
the PoP association between the frontend and backend.

A. Address Space

Our measurement results on the backend addresses are listed
in Table V. In contrast to the large frontend address space, the
backend address space is relatively small, and the number of
/24 prefixes is also small. Overall, Cloudflare has the largest
backend address space, which is more than 10 times larger
than that of CloudFront and Fastly. Although CloudFront has
the largest frontend address space, the number of its backend
addresses collected is the smallest among the three CDNs.

Next, we study the percentage of new backend addresses
discovered in each experiment to explore the different opera-
tion patterns. The results are shown in Figure 4. We obtain the
majority of Fastly’s backend addresses in the first experiment,
and the rest of the experiments do not contribute much. Mean-
while, the backend addresses of Fastly collected from any
experiment do not differ much from its preceding experiment.
Therefore, we can see that Fastly has a stable and fixed set of
IP addresses as its backend. For CloudFront, every experiment
has a non-trivial increase in the total number of backend
addresses. The backend addresses from any experiment are
almost completely different from its preceding experiment,
which implies that CloudFront is constantly changing its
backend addresses. As we do not observe a clear trend that the
number of backend addresses will stop growing after all 35
experiments, our collection does not cover all of CloudFront’s
backend addresses. For Cloudflare, all of its backend addresses
are mainly collected from six experiments, where their red
bars are close to 100%, indicating that new backend addresses
collected in these six experiments are completely new sets of
backend addresses. Moreover, in comparison to the preceding
experiment, the backend addresses of each experiment are
either almost identical or almost completely different. Thus,
we speculate that Cloudflare has six different sets of backend
addresses in those measured PoPs and rotates them over
time. After the 18th experiment, the total number of backend
addresses no longer has any significant increase, implying that
we have collected the majority of backend addresses in the
PoPs we measured.

In summary, Fastly assigns its backend a set of stable
and fixed addresses; however, Cloudflare rotates six sets of
backend addresses and the CloudFront’s backend addresses are
highly dynamic in an irregular manner. Note that the dynamic
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Fig. 4: Percentage of New Backend Addresses per Experiment

IP assignment lowers the security risk of an edge server, as it
is more difficult for adversaries to locate the server.

B. Backend Addresses of PoPs

Here we examine the backend addresses distributed at each
PoP. In our experiment, we may have an incomplete view
of some PoPs if (1) these PoPs are temporarily closed for
maintenance, or (2) our requests are occasionally directed
to these PoPs due to temporary misconfigurations or the
oscillation of the BGP routing path. Therefore, in the following
analysis, we show only the PoPs whose backend addresses can
be observed in at least 80% of experiments. The results are
presented in Figure 5.

For Fastly, the total number of backend addresses at each
PoP obtained from all of the experiments is almost equal to
the average number observed per experiment. This implies that
Fastly’s backend addresses are stable at every single PoP. Also,
we observe that the backend addresses in every Fastly PoP are
all in one /24 prefix, while the least significant byte of IPs
falls into the range of .20~ .51 and its maximum number of
backend addresses of a PoP is 32. For CloudFront, the average
number of backend addresses per experiment is extremely low
for each PoP. Its maximum number is only 4 (found at the EC2
PoP in Virginia). However, its total number is much higher
than the average at all CloudFront PoPs, indicating that the
backend addresses at all CloudFront PoPs are highly dynamic.
The total and average numbers of backend addresses at each
Cloudflare PoP are significantly higher than those of Fastly and
CloudFront. For every Cloudflare PoP, it also rotates around
six different sets of backend addresses over time, and the total
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average number of backend addresses per experiment at each
PoP.

number of backend addresses is approximately six times the
average. Hence, the operation patterns observed from Section
V-A are also confirmed in each of the PoPs.

Furthermore, as we mentioned in Section II, with the current
implementation of the CDN load balancing, the frontend ad-
dress may not correspond to a particular edge server. However,
we notice that the number of backend addresses collected
from a PoP reveals the number of simultaneously working
edge servers at that PoP. A recent study [14] investigates the
network infrastructure of Fastly, where the most common PoP
hosts 32 edge servers, confirming our observation on Fastly.

C. Co-PoP of Frontend and Backend Addresses

When a cache miss happens at a PoP, its edge server could
(1) directly retrieve the content from the origin or (2) forward
the request to another PoP. In the first scenario, the frontend
and backend addresses will be observed in the same PoP. In
the second scenario, the frontend and backend addresses will
be observed in different PoPs.

In our experiments, we observe that in Cloudflare and Fastly,
a backend address and its associated frontend address are
always in the same PoP, which means that they would not
forward the HTTP requests to other PoPs.> In contrast, more
than 97% of CloudFront address pairs have their frontend and
backend addresses located in different PoPs. More importantly,
all of these backend addresses are in 11 EC2 PoPs while

SNote that the shielding services [26] from Fastly would allow its PoP
to fetch content from another fixed and preconfigured PoP, but it requires a
customer configuration.
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Fig. 6: Association between EC2 PoPs and non-EC2 PoPs.
The locations of EC2 PoPs are listed in the left column,
and the number of associated non-EC2 PoPs is shown in the
parentheses.

their associated frontend addresses are all in non-EC2 PoPs.
Therefore, we speculate that CloudFront has a two-level PoP
infrastructure, where the EC2 PoPs are second-level PoPs
and are exclusively used for receiving requests from the first-
level PoPs (i.e., the non-EC2 PoPs) and fetching content from
the origins. We visualize the association between EC2 PoPs
and non-EC2 PoPs in Figure 6. The circular markers on the
map represent the locations of non-EC2 PoPs, and the colors
represent different groups of non-EC2 PoPs associated with
the same EC2 PoP. We can clearly see that the non-EC2 PoPs
associated with the same EC2 PoP are geographically close to
one another, and that the EC2 PoP is geographically close to
its associated non-EC2 PoPs.

Given that the EC2 PoPs are essentially Amazon’s cloud
data centers hosting a large number of web domains that
also adopt CloudFront, such a two-level PoP design improves
performance by reducing end-to-end latency and augmenting
cache storage. Furthermore, the two-level PoP infrastructure
lowers the workload of the origin server and improves the
cache hit ratio. Specifically, we assume multiple users request
the same new content from multiple different first-level PoPs,
and these first-level PoPs are associated with the same second-
level PoP. In this case, the CDN will only need to fetch the
requested content from the origin once (i.e., one cache miss)
because the second-level PoP will reply to each first-level PoP
with the requested content once it receives one copy from
the origin. Under the same scenario, a CDN without such a
two-level PoP (i.e., one-level PoP) infrastructure may produce
multiple cache misses and has to fetch the requested content
multiple times from the origin.

D. Address Expansion

The frontend addresses we collected are obviously not con-
tinuous, and here we investigate whether the other addresses
in those /24 prefixes actually perform the same function and
whether the expanded frontend addresses can give us more
backend addresses. To do so, we apply the same technique
described in Figure 3 by sending the HTTP requests to IP
addresses in all frontend’s /24 prefixes and examining received
requests at our origin server.



TABLE VI: Address Expansion

Provider Frontend Frontend Addr. Backend
Addresses Coverage' Addresses
Cloudflare 476,094 99.5% 1,814
CloudFront 342,329 99.3% 55
Fastly 41,821 86.9% 977

TFrontend address coverage represents the percentage of the valid frontend
addresses in IP addresses of all frontend’s /24 prefixes.

The results are shown in Table VI. In total, we successfully
discover 860,244 valid frontend addresses from the three CDN
providers, which is 3.7 times the previously collected ones.
More importantly, almost all of the addresses in the prefixes of
Cloudflare and CloudFront are valid frontend addresses, and
86.9% of them are valid for Fastly. However, although we
expand a significantly larger number of frontend addresses,
the number of backend addresses that they probed is almost
the same as the number of average addresses per experiment
presented in Table V. Therefore, we contend that the frontend
addresses used in our measurement probe all the of simultane-
ously working backend addresses at each experiment and the
CDNs usually assign a limited number of backend addresses
to handle the backend-origin connections.

VI. PERFORMANCE AND SECURITY IMPLICATIONS OF THE
BACKEND

The performance and security of CDNs are critical to CDN
customers and end-users. In this section, we analyze the
performance and security implications of the CDN platforms
from the perspective of their backend interfaces.

A. Performance Implications

How the backend interfaces and origin servers are deployed
significantly impacts the content fetching time when a cache
miss happens at the CDN or when a non-cacheable content
is requested. This is because a frontend is usually close to
end-users so that the latency between the frontend and end-
users is small, while the backend needs to fetch the content
from the origin server, which could be located far away from
it. Therefore, we assess the RTTs and AS paths between
origin servers and backend PoPs to study the performance
implications of the CDN backend.

Nowadays, with the rapid growth of the cloud and its elastic
computing services, website owners usually host their web
services in the cloud, such as Amazon Web Services (AWS).
Therefore, to emulate the location of an origin server, we
set up 15 vantage points at each of the regions of the AWS
EC2. Then, we issue traceroutes from our vantage points
to one backend address in each of the /24 prefixes of the
CDN backend interfaces. We choose /24 prefixes because the
traceroutes to the addresses in the same /24 prefixes typically
traverse the same AS path and their RTTs are similar to one
another. Finally, as a PoP may have multiple /24 prefixes, we
group the traceroute results by PoPs and average them. For
CloudFront, we issue traceroutes to the backend addresses at
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Fig. 7: CDF of RTTs from EC2 to Backend Interfaces

the second-level PoPs because, according to our observations
in Section V-C, those addresses handle more than 97% of the
backend connections. However, in the experiment, we notice
that those backend addresses are configured not to respond
to the traceroute queries. Nevertheless, since we know that
the second-level PoPs of CloudFront are all located at the 11
EC2 regions, we then launch instances at the same regions
as those backend addresses and issue traceroutes from our
vantage points to these instances to obtain approximate RTTs
and AS paths.

1) Round-Trip Time (RTT): We extract the RTTs from our
traceroute dataset and present the results in Figure 7. Overall,
the RTTs from our vantage points to a backend of the CDNs do
not differ much among the three CDNs. This is because they
all have the globally deployed backend PoPs and similar ratios
of backend PoPs on each continent. The noticeable difference
appears at the tail of the CDF, where Cloudflare and Fastly
have a longer tail than that of CloudFront. In Figure 8, we
further show the average RTTs from vantage points to all of
the backend PoPs for each CDN. We can observe that the
vantage points in North America produce the shortest average
RTTs. The RTTs obtained from vantage points in Europe are
slightly longer while the vantage points in Asia Pacific and
South America generate the longest RTTs. Thus, for a website
owner who aims to serve content to global users through these
three CDNSs, placing the origin server in North America is an
optimal strategy to reduce latency from the origin server to
the CDN backend PoPs.

2) AS Path: The traceroute dataset contains sequences of
IP addresses from our vantage points to the CDN backend
interfaces. To analyze the connections at the AS level, we
convert the IP addresses into the AS numbers. To do so,
we first remove the IP addresses with private and reserved
IP prefixes, since those prefixes should not be announced by
BGP routers. Then, we filter out the IP addresses within the
prefixes® of Internet Exchange Points (IXPs) to obtain the

SWe identify the IP prefixes of IXPs using the CAIDA’s IXP dataset
https://www.caida.org/data/ixps/.
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ASes that are directly connected at the IXP [27]. In addition,
we remove the unresponsive hops, which account for 4.8% of
the total hops. Finally, we map the remaining IP addresses to
the AS numbers using the RouteView BGP dataset [28].

Figure 9 shows that the AS path length is shortest from
the vantage points to CloudFront, and more than 95% of the
path lengths are less than 3. Also, all ASes along the paths
belong to Amazon itself. Note that such observation from
CloudFront is largely due to the fact that we emulate the
location of the origin servers at the EC2 while the backend
PoPs of CloudFront are also located at EC2. Thus, even if
the vantage points and CloudFront backend PoPs are both
distributed across the world, Amazon still routes the traffic
within its own network. Moreover, the distribution of AS path
lengths of Cloudflare and Fastly are roughly the same, and
they are mostly concentrated at 3 or 4. In comparison with
AS path lengths from end-users to the frontend, which are
usually 2 or 3 [29], the AS path lengths from the origin server
to a CDN backend is 1 AS longer. The selection of AS paths
between the origin server and a CDN backend is a key factor
affecting RTTs. A shorter AS path would possibly shorten
the RTT, which helps to improve the CDN performance. Our
observation implies that CDN providers still have space to
improve their backend performance.

B. Security Implications

Unlike the frontend connections, the backend communica-
tions are typically hidden from end-users. Here, we study the
port management of backend addresses and analyze its security
implications.

Given the purpose of fetching content from the origin, a
backend server acts as a reverse proxy to initiate the TCP
connection.” Therefore, a backend address does not need any
port open to the public. The unnecessary open ports may
increase the attack surface of the CDN infrastructure. In order
to study the open ports of the backend addresses, we leverage
Nmap to perform a TCP port scan on the 1,000 most common

7We note that the three CDN providers we studied are all with the pull
mode and do not support the push mode, in which the origin server initiates
the connections and actively uploads the content to the CDN. With the push
mode enabled, CDNs need to assign specific domains/edge servers to receive
the push connections from origins. We mainly focus on the pull mode because
it has been dominant in today’s CDN ecosystem.
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TABLE VII: TCP Open Ports
Provider TCP Open Ports i?lc(;::;g Percentage
Cloudflare - - -
HTTP/80 HTTPS/443 365 42.3%
CloudFront RTMP/1935 29 3.7%
Fastly HTTP/80 HTTPS/443 946 97.7%

ports [30]. In particular, we send SYN packets to the scanned
ports of all backend addresses we collected. If an SYN-ACK
packet is received, we infer that the port is open; otherwise, an
RST packet indicates that the port is closed. We then consider
that the packets are dropped by the CDN’s firewall if there is
no response for two attempts, indicating that the port is also
unreachable by the public.

1) Open Ports on Backend Addresses: As shown in Table
VII, all probes sent to Cloudflare’s backend addresses are
dropped by the firewalls, so no open port is found. For
CloudFront, its ports HTTP/80 and HTTPS/443 are open at
365 of the backend addresses, among which 29 of them
are also opening port RTMP/1935. Interestingly, these 365
backend addresses are all from non-EC2 PoPs. In other words,
all backend addresses from EC2 PoPs have no open ports.
However, for Fastly, 97.7% of the backend addresses are
opening ports HTTP/80 and HTTPS/443 to the public.

2) Backend Accessibility: Since we identify that the ports
are opening on part of the backend addresses of CloudFront
and Fastly, we test whether these backend addresses are
allowed to be used as valid (frontend) addresses to process our
HTTP requests. To do so, we send the HTTP requests directly
to these backend addresses, asking for the landing pages of the
CDN’s customers. By doing so, we identify that all backend
addresses are able to process our requests and provide the
200 OK responses, which implies that these backend addresses
perform the same function as that of frontend addresses.

In addition, we also directly send HTTP requests to these
backend addresses to see how the CDNs would process these
requests to reach our origin server. Similar to the frontend
address cases, the majority of requests sent to CloudFront
are forwarded to EC2 PoPs before arriving at our origin
while requests sent to the backend addresses in TPE (Taipei)



and JAX (Jacksonville) are directly forwarded to us with
the addresses in their own PoPs. Fastly forwards requests
to our origin using a different backend address in the same
prefix from the same PoP. Moreover, when we send multiple
requests to the same backend address and examine the received
requests at our origin server, we observe that the first server
ID in the Fastly-FF headers of those requests is always
the same, which indicates that all requests are received and
processed by one particular edge server. This observation
is completely different from the scenario of sending HTTP
requests to Fastly’s frontend address, where the first server
ID in Fastly-FF headers is constantly changing due to the
load balancing system. In other words, if we specify Fastly’s
backend addresses to fetch the content, it would completely
bypass Fastly’s load balancing system. This could be a poten-
tial security risk for Fastly’s platform, since adversaries may
intentionally increase the workload of a particular edge server.

VII. RELATED WORK
A. CDN Deployment and Performance

Huang et al. [3] conducted extensive measurements to
evaluate the performance of two large CDN platforms (Akamai
and Limelight) and illustrated two design philosophies for
CDNs: (1) enters deep into ISPs and (2) brings ISPs to home.
They collected the IP addresses in DNS responses (i.e., the
frontend addresses) and quantified their delay performance
and server availability. Scott et al. [5] presented a toolchain,
called Satellite, for studying the CDN platforms and measuring
the web infrastructure deployment and accessibility. Pujol
et al. [2] studied a commercial CDN’s backend interface
by analyzing logs from the CDN’s edge servers. However,
our approach provides an active examination on the backend
interface of CDNs without accessing the logs.

Ager et al. [4] designed an automated approach based on
DNS resolution and BGP routing information to discover
and classify content hosting and delivery infrastructures and
found that a large amount of content is exclusively served
from particular geographic regions and ASes. Chiu et al. [29]
investigated the length of the AS path between end-users and
the frontend interface of the content providers, including a
CDN and popular web services, and identified that many end-
users are only one AS hop away from the frontend interface.
Our work studies the AS path length between the CDN
backend interface and the origin servers, showing that it is
one hop longer than the AS path length between end-users
and a CDN’s frontend.

Calder et al. [31] examined the performance of an anycast-
based CDN and identified that nearly 20% of the clients
are being redirected to suboptimal PoPs. Chen et al. [32]
studied the practical impact of the EDNS-Client-Subnet (ECS)
extension in Akamai’s end-user mapping system and showed
that significant performance benefits can be achieved with
ECS when selecting proximal edge servers. Chen et al. [33]
investigated the effect of the deployment of edge servers on
the user-perceived performance and found that the content

fetching time between a CDN and origin servers is a dominant
factor for end-to-end performance. Our approach allows a third
party, such as CDN customers and researchers, to explore such
a critical factor.

B. CDN Security

Liang et al. [34] systematically investigated the practical
issues when composing HTTPS with CDN because CDN cuts
the secure communication paths offered by HTTPS. Chen
et al. [24] presented the forwarding-loop attacks in CDNs,
which allow adversaries to create request loops within one
CDN or across multiple CDNs to exhaust the source ports
and bandwidth resources of CDNSs. Gilad et al. [35] designed
an on-demand CDN system in which website administrators
can build their own CDNs on top of the widely deployed cloud
infrastructure to defend against DDoS attacks.

Vissers et al. [7] explored eight attack vectors of origin ex-
posure on the DPS offered by CDNss that could be exploited by
adversaries to bypass a CDN’s request rerouting and directly
launch the DDoS attack on the origin server. Subsequently,
Jin et al. [9] revealed the residual resolution vulnerability,
in which adversaries could acquire the protected origin IP
address from previously adopted DPS providers. Hao et al.
[36] presented the redirection hijacking attack in CDNs, in
which adversaries can maneuver a DNS mapping system to
disrupt CDN operations.

VIII. CONCLUSION

In this paper, we designed an active approach to discovering
the backend interface of CDNs. To the best of our knowledge,
this is the first attempt to reverse-engineer and characterize
the backend interface of CDNs without accessing the logs
from edge servers of particular CDNs. Such an approach
allows us to probe the backend interfaces of multiple CDN
platforms from the outside. We then presented a comprehen-
sive measurement study on the backend interfaces of three
leading CDN platforms, including CloudFront, Cloudflare, and
Fastly. Our measurement results show that the backend address
space is relatively limited compared to the wide range of
frontend address space. Also, we observed different operation
patterns of backend addresses in the three CDNs. Moreover,
by analyzing the backend addresses and their associated fron-
tend addresses, we investigated the PoP association between
the frontend and backend and visualized it for CloudFront’s
two-level PoP infrastructure. In addition, we explored the
performance implications of CDN backends by assessing the
RTTs and AS path lengths between origin servers and backend
PoPs. Finally, we examined the port management of backend
addresses, and then we analyzed the backend accessibility and
its security implications.
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