
DNSonChain: Delegating Privacy-Preserved DNS
Resolution to Blockchain

Lin Jin
University of Delaware

linjin@udel.edu

Shuai Hao
Old Dominion University

shao@odu.edu

Yan Huang
Indiana University
yh33@indiana.edu

Haining Wang
Virginia Tech
hnw@vt.edu

Chase Cotton
University of Delaware

ccotton@udel.edu

Abstract—Domain Name System (DNS) is known to present
privacy concerns. To this end, decentralized blockchains have
been used to host DNS records, so that users can synchronize
with the blockchain to maintain a local DNS database and
resolve domain names locally. However, existing blockchain-based
solutions either do not guarantee a domain name is controlled
by its “true” owner; or have to resort to DNSSEC, a not yet
widely adopted protocol, for verifying ownership. In this paper,
we present DNSonChain, a new blockchain-based naming service
compatible with DNS. It allows domain owners to claim their
domain ownership on the blockchain where DNS records are
hosted. The core function of DNSonChain is to validate the
domain ownership in a decentralized manner. We propose a
majority vote mechanism that randomly selects multiple par-
ticipants (i.e., voters) in the system to vote for the authority
of domain ownership. To provide resistance to attacks from
fraudulent voters, DNSonChain requires two rounds of voting
processes. Our security analysis shows that DNSonChain is robust
against several types of security failures, able to recover from
various attacks. We implemented a prototype of DNSonChain
as an Ethereum decentralized application and evaluate it on an
Ethereum Testnet.

I. INTRODUCTION

The Domain Name System (DNS) provides vital mappings
between domain names and their numerical IP addresses to
direct users to Internet services. However, DNS protocol was
originally designed as an unencrypted protocol that allows
eavesdroppers to sniff the domain that a user is going to visit,
raising a well-known privacy concern.

One possible way to mitigate this privacy problem is to
encrypt DNS traffic. However, encrypted DNS traffic is still
vulnerable to traffic analysis, and resolvers are required to
be trustworthy. Alternatively, researchers and practitioners are
leveraging decentralized blockchain technology to host DNS
records, so that users can download DNS records from a
blockchain to their local storage to build their own DNS
databases. As a result, the name resolution becomes local
DNS lookup without generating any network traffic, and hence
preserves DNS privacy. However, existing blockchain-based
naming systems [1], [15], [32] are incompatible with DNS
as either domain owners may not be able to hold their own
domain names on blockchains or an ownership verification
requires DNSSEC [4], which is currently not widely adopted
due to limited registrar support [11] and dynamic DNS map-
pings [23].

In this paper, we propose DNSonChain, a new blockchain-
based naming system, to address the DNS’s privacy issues.
It is compatible with the current DNS system and bridges the
Internet users who have concerns on their DNS privacy and the
domain owners who would like to provide privacy benefits to
their visitors. DNSonChain is a decentralized system realized
as smart contracts running on Ethereum. It allows a domain
owner to claim its domain ownership on the blockchain with-
out the support from DNSSEC, and host its DNS records on
the blockchain thereafter. To achieve this goal, DNSonChain
needs to validate the domain ownership on DNS. However, as
a decentralized system, DNSonChain has no central point of
authority, thereby the ownership validation has to be done in
a decentralized manner. To this end, we propose a majority
vote mechanism in which multiple participants (i.e., voters)
in the system are randomly selected to validate the domain
ownership by performing normal DNS lookups, and then vote
for its correctness. To verify domain ownership, a domain
owner stores its blockchain ID in a TXT record that can be
retrieved by voters. Once the ownership is established, the
domain owner is allowed to update its DNS records on the
blockchain. Also, the domain owner can associate multiple IP
addresses to its domain for load balancing purposes.

The development of DNSonChain faces three major chal-
lenges. First, the majority vote mechanism must be able to
resist Sybil attacks, where adversaries can employ a large
number of pseudonymous identities so that they have an
unfairly high probability to be selected. We defend against
such a Sybil attack with stake-based committee selection
where each voter’s voting weight is determined in proportion
to its stake (or asset). Second, domain ownership recorded by
DNSonChain may be inconsistent with ordinary DNS due to
a domain takeover attack or domain expiration. We introduce
a cleanup procedure to address these issues by incentivizing
participants who notice the questionable ownership to rectify
the ownership records. Third, adversaries may maneuver votes
through DNS manipulation as voters validate the domain
ownership with a normal DNS lookup. DNSonChain provides
resistance against such attacks by requiring two separate
rounds of voting processes with a prescribed interval. The
interval raises the bar for adversaries to attack a domain on
DNSonChain, as they have to either succeed in the nameserver
attacks twice or compromise a nameserver for a lasting period
longer than the interval.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

Recursive resolver

Root

TLD

AuthoritativeClient

Adversary

Plaintext queries

Query collection

Fig. 1. DNS Privacy Issue.

We implement a prototype of DNSonChain and deploy it to
the Ropsten network, an Ethereum Testnet. We demonstrate
that one voting process can be done within several minutes in
real scenarios. Moreover, we show that a domain owner can
incentivize the voters to vote for its domain with a small cost.

The remainder of this paper is organized as follows. Sec-
tion II surveys the background and other related work. We
present the system overview of DNSonChain in Section III
and detail the majority vote mechanism in Section IV. Sec-
tion V describes the ownership management on DNSonChain.
Section VI provides the security analysis of DNSonChain.
Implementation and evaluation of DNSonChain are described
in Section VII, and we conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

DNS Privacy. As shown in Figure 1, to conduct a DNS
resolution, a client issues a DNS query to a recursive resolver
which will then traverse the DNS hierarchical database and
return the requested records to the client. As DNS is an un-
encrypted protocol, adversaries on the path between the client
and its resolver including the resolver can sniff the client’s
DNS queries, allowing adversaries to profile the client’s brows-
ing activities that are considered private information.

To address such a privacy concern, the idea of encrypted
DNS (e.g., DNS-over-HTTPS (DoH) [25] and DNS-over-TLS
(DoT) [27], [36]) has been proposed to secure the commu-
nication between the client and resolver. However, existing
studies [26], [33], [34] have demonstrated that encrypted
DNS traffic is still vulnerable to traffic analysis, which could
lead to privacy leakage. More importantly, an encrypted DNS
provider still has the capability to examine and manipulate its
clients’ DNS queries [29]. As a result, the encrypted DNS
techniques do not fundamentally resolve the DNS privacy
issues for clients, instead, it shifts the information collector
from, usually, the client’s local ISP to the encrypted DNS
providers. In comparison, DNSonChain completely addresses
such issues by eliminating the network traffic when conducting
DNS lookups, and hence no on-path adversaries or third-party
resolvers could get involved. We notice that, except for DNS,
there are multiple channels such as HTTP(S) that can be
leveraged to leak user privacy, and DNSonChain only focuses
on addressing DNS privacy issues.

Blockchain and Smart Contract. Blockchain is a public
ledger that permanently and unalterably records all the trans-
actions sent by users. Blockchain systems leverage consensus
protocols to achieve agreement on the next block. Bitcoin [7]
and Ethereum [18] adopt the proof-of-work protocol where

TABLE I
SUMMARY OF BLOCKCHAIN-BASED NAMING SYSTEMS

Separate TLD Registrar DNS Compatibility

Namecoin • •
Blockstack • •

ENS • • Limited†

DNSonChain •
† DNSSEC is required for domain ownership validation.

miners repeatedly guess a nonce so that the hash of the nonce
and block data satisfies a requirement. Algorand [21] proposes
a Byzantine agreement protocol that different sets of users are
selected to propose and vote for blocks.

A smart contract is a piece of code programmed by users
and stored in the blockchain. Variables and functions are de-
fined in the smart contract. Users interact with smart contracts
by sending blockchain transactions. All miners execute the
functions of the smart contract when they are called and update
the variables accordingly. With the ability of decentralized
computing, smart contracts enable decentralized applications,
which is the way that DNSonChain is built upon.

Blockchain-based Naming System. Namecoin [32] is a
Bitcoin-based system that attempts to decentralize DNS. Since
it does not have a mechanism to validate domain ownership,
all the domains in Namecoin under .bit top-level domain,
which is not in the DNS namespace. Kalodner et al. [30]
thoroughly analyzed the Namecoin system and revealed that
most of the registered domain names are squatted names.

Ali et al. [1] designed Blockstack, a naming and storage
system built upon Bitcoin. In Blockstack, the data can be
stored off the blockchain so that there is no limit on data
size, and it is flexible to update the data value without making
a new transaction on the underlying blockchain. However, like
Namecoin, it cannot validate the domain ownership of DNS.

Ethereum Name Service (ENS) [15] is another blockchain-
based naming system built on Ethereum [18]. To claim the
domain ownership on ENS, the domain needs to enable
DNSSEC [9], [16], which unfortunately has an extremely low
adoption. According to [10], [11], less than 1% of second-level
domains with .com TLD are properly signed, and one-third
of the signed domains are misconfigured.

In summary, all these Blockchain-based naming systems are
not well-compatible with DNS. In contrast, our DNSonChain
is compatible with DNS by enabling all domain owners to
hold their same domain names on the blockchain. Table I
summarizes the current blockchain-based naming systems.

III. SYSTEM OVERVIEW

High-level Idea. DNSonChain provides DNS privacy pro-
tection by hosting DNS records on a blockchain. Users who
synchronize the blockchain can build a local DNS database
to enable local DNS lookup. DNSonChain’s core function
is to validate and manage the ownership of domains in a
decentralized fashion, implemented as smart contracts running
over a blockchain.

System Participants. In DNSonChain, each participant is
also a user of the underlying blockchain with a pair of public
and private keys, and its blockchain ID is determined by its
public key. The participant communicates with DNSonChain
by sending blockchain transactions. The DNSonChain involves
three types of roles: the domain owners, the voters, and the
cleaners. Note that a participant can have multiple roles.

(1) Domain owners are Internet users who have the autho-
rization to modify the DNS records of a domain. A domain
owner only needs to claim the ownership of its apex domain
(e.g., example.com). After that, the domain owner controls
the apex domain as well as all its subdomains. To claim and
hold the domain ownership on DNSonChain, domain owners
need to show their capability to control their domains on DNS.
Domain owners are motivated to participate in DNSonChain
to offer privacy benefits to their domain visitors.

(2) Voters are those users who deposit money (i.e., the cryp-
tocurrency) into the system as their stakes so that they have
a non-zero probability to be selected as committee members.
The committee members help to validate the ownership of
domain owners. Voters are incentivized to validate domain
ownerships for earning rewards from their honest votes.

(3) Cleaners can be any participants who help DNSonChain
clean up the domain ownership records that are inconsistent
with the traditional DNS. Cleaners are incentivized to clean
the ownership by receiving rewards.

Majority Vote. DNSonChain validates domain ownership
through a majority vote mechanism. First, the domain owner
uploads its blockchain ID to a TXT record of a pre-defined do-
main, e.g., _dnsonchain_.example.com. Then, a selected
committee of voters retrieve and verify the TXT records before
casting their votes.

When a voting request is received, each voter first deter-
mines whether itself is being selected as a voting committee
member. The selection is done in a Proof-of-Stake manner to
defend against Sybil attacks. Therefore, a voter’s influence is
in proportion to its stakes, and the impact of malicious voters
is bounded by their total stakes. Next, the selected committee
members send DNS queries to retrieve the TXT record of the
corresponding domain and validate if an expected blockchain
ID is stored. Their votes of domain ownership are then cast,
and the majority vote is regarded as the final voting result.

To incentivize voters to behave honestly, DNSonChain
rewards the voters whose votes are in line with the final
voting result. Following the same idea, one can also prevent
participants from abusing the system by penalizing dishonest
voters.

DNSonChain Operation. DNSonChain manages the do-
main ownership based on the voting results. It includes grant-
ing the ownership to domain owners after validating votes.
Since one claim/cleanup voting process may be accidentally
dominated by malicious participants, DNSonChain requires
two rounds of claim/cleanup voting processes to success-
fully claim/cleanup domain ownership. Moreover, there is a
requirement of the interval between the two claim/cleanup

voting processes. The interval raises the bar for adversaries
to attack a domain on DNSonChain. In addition, it provides
opportunities for a potential victim domain owner to avoid
fraudulent ownership cleanups.

IV. MAJORITY VOTE

A. Committee Selection

In each voting process, DNSonChain randomly selects a
subset of voters as a committee qualified to vote. In order
to counter a Sybil attack, every voter is selected with a
probability proportional to its stake in the system.

Stake pool. DNSonChain manages a stake pool in which
anyone can deposit money (i.e., the stake) to become a voter.
The stake can be withdrawn later. The stake pool records the
most updated amount of stake held by each voter, as well as
the time of the latest stake update. When a voter updates its
stake by either making a deposit or withdrawal, it loses its
eligibility to vote for all voting processes launched prior to
the update. We set this restriction because (1) a voter’s stake
is the selection algorithm’s input that determines the selection
result, and (2) DNSonChain does not keep a history of stake
update due to high storage cost. Without such a restriction, a
voter can obtain unfair influence over the selection result by
manipulating its stakes during the voting process.

Selection Procedures. Voters conduct self-selection locally
to learn their qualifications to vote. In particular, each voter
finds its tickets for a voting process through the ticket genera-
tion algorithm shown in Algorithm 1. A voter is selected as a
committee member if it finds at least one ticket and the total
number of tickets it finds is its voting weight. However, if no
ticket is found, then the voter is not selected as a committee
member for this voting process.

Algorithm 1 Ticket Generation
1: procedure TICKETS(seed ,Vid , s,S , len,W)
2: tickets ← []
3: p ← s/S
4: threshold ← p ∗ (2 len − 1)
5: index ← 0
6: while index <W do
7: hash value ← hash(seed ,Vid , index)
8: if hash value < threshold then
9: append(index , tickets)

10: index++
11: return tickets

Concretely, when a voting process is launched, DNSon-
Chain specifies an expected voting weight W for the voting
process. The W indicates the expected number of total tickets
that can be found by all voters. In the meantime, DNSonChain
records the total number of stakes S and generates a seed
by hashing (1) the current block hash, (2) the blockchain ID
of the voting requester, and (3) the requested domain. Also,
each voter calculates its stake fraction p = s/S, where s
represents the number of stakes held by the voter. Then, each

voter generates W hash values by hashing the seed, the voter’s
blockchain ID (Vid), and an index i, i = 0, 1, ...,W − 1. A
threshold of each voter is set to p ∗ (2len − 1), where len
is the length of the hash value. As such, if a hash value is
smaller than the threshold, the index that generates the hash
value serves as the voter’s ticket. Figure 2 illustrates the ticket
generation results.

For each voter, the ticket generation algorithm essentially
performs W independent Bernoulli trials with parameter p.
Therefore, the result of ticket generation follows the binomial
distribution Binomial(W,p), and the expected voting weight
of a voter is Wp, which is proportional to its stake. As such,
the expected voting weight of adversaries would not increase
by distributing stakes to multiple pseudonymous identities.

Algorithm 2 Determine Voting Weight
1: procedure WEIGHT(seed ,Vid , s,S , len,W , tickets)
2: tickets ← filter duplicate and illegal(tickets)
3: p ← s/S
4: threshold ← p ∗ (2 len − 1)
5: weight ← 0
6: for ticket ∈ tickets do
7: hash value ← hash(seed ,Vid , ticket)
8: if hash value < threshold then
9: weight++

10: return weight

When a voter finds its tickets, it submits the tickets to
DNSonChain for verification. Once the tickets are verified,
DNSonChain obtains the voting weight of the voter. Algorithm
2 describes how DNSonChain verifies a voter’s tickets and
determines its voting weight in detail. First, DNSonChain
filters out duplicate and illegal tickets. The illegal tickets
are those that are not in the range of [0,W − 1]. Then,
DNSonChain recomputes the threshold for the voter. The
threshold is calculated using the voter’s stake s and total
stake S. For an eligible voter, its stake at the time when
DNSonChain verifies its tickets must be the same as its stake
at the beginning of the voting process. Although DNSonChain
does not record every voter’s stake at the beginning of the
voting process, it checks the time of the latest stake update
to verify the eligibility of a voter. Thus, DNSonChain obtains
the eligible voter’s stakes s from the stake pool at the time
of verification. As the total stake S is already recorded at the
beginning of the voting process, the threshold is recomputed.
Furthermore, DNSonChain recomputes the hash values by
hashing the seed, the voter’s blockchain ID, and filtered
tickets. Finally, DNSonChain determines the voting weight by
counting the number of recomputed hashes that are smaller
than the threshold.

B. Cast Votes

When a voter has been selected as a committee member, it
retrieves the TXT record of the pre-defined subdomain under
the requested domain. Voters determine whether to cast an
approval vote or a disapproval vote based on the type of

Fig. 2. Ticket Generation Illustration.

the voting process, i.e., the claim voting process and cleanup
voting process. In the claim voting process, if the content in
the TXT record is the blockchain ID of the voting requester,
voters cast an approval vote, and vice versa. In the cleanup
voting process, if the content in the TXT record is not the
blockchain ID of the current domain owner on DNSonChain,
voters cast an approval vote, and vice versa.

However, there is no guarantee that voters will follow the
above procedures that honestly cast their votes based on what
they retrieved from the TXT record, resulting in the ownership
on DNSonChain being unreliable. To tackle this problem,
DNSonChain first incentivizes voters to behave honestly by
rewarding the voters who vote for the final decision (i.e., only
voters who in the majority camp receive rewards). Then, as
we have the assumption that the majority of stakes are held
by the good voters, the probability that good voters dominate
the voting process approaches 1 (Section VI-A).

Nevertheless, such an incentive is still not sufficient to
motivate voters to behave honestly. One subtle implication is
that voters could simply follow others’ votes to become the
majority at a high chance. This is because the votes, essentially
the blockchain transactions, sent by voters will be available
to all other voters once the transactions are being executed.
Therefore, one strategy for the voters to become the majority is
to wait for enough votes till there is a clear trend to infer what
is the final decision of the voting process, and then simply
submit the majority vote to DNSonChain.

To discourage such lazy followers, we design a two-stage
voting strategy called Commit & Fulfill, where each voter
first makes a commitment to its vote at the Commit stage and
then reveals its vote at the Fulfill stage. In particular, When
a voting request is received by DNSonChain, the voting stage
is set to the Commit stage. Each committee member generates
a nonce and calculates a commitment by hashing the nonce and
its vote. Then, they submit the commitments to DNSonChain
and wait for the Fulfill stage. Note that the commitment
can be sent in the same transaction as the tickets. DNSonChain
records the commitment for each voter and sets a threshold τ ,
which controls how much voting weight it needs.

Once the total received voting weight reaches τW , DNSon-
Chain stops receiving commitments and sets the voting stage to
the Fulfill stage.1 After that, each voter whose commitment
has been added to DNSonChain sends its vote and nonce to-
gether to DNSonChain to fulfill its commitment. DNSonChain

1This also means that commitments received after the Commit stage will
be ignored, which encourages voters to commit as early as possible.

calculates the hash of the nonce and vote, and then verifies
if it matches the commitment received at the Commit stage.
Only those votes that have their commitments matched will be
counted towards the final decision. Note that each commitment
received at the Commit stage must be unique, otherwise a
voter may still be able to follow others’ vote by copying
both the commitment at the Commit stage and the vote and
nonce at the Fulfill stage. Therefore, DNSonChain rejects
duplicate commitments received at the Commit stage. The
commitment will always be unique as long as voters do not
leak their nonces before the Fulfill stage and the length of
the nonce and commitment are long enough, e.g., 256 bits. In
this manner, voters are not able to follow others’ votes. Hence,
to be the camp of the majority, a good voter is incentivized
to perform the domain validation and cast a vote honestly as
other good voters will do the same. Note that both the Commit
and Fulfill stage will be terminated if any of them cannot
receive enough legitimate votes in a certain period, resulting
in the abandonment of the voting process. However, assuming
that most of the participants in DNSonChain are benign users,
the two stages should be able to successfully converge due to
the reward incentive.

Once a vote is revealed, DNSonChain adds its voting weight
to the corresponding camp (approval or disapproval). Note
that the voting weight is calculated at the Commit stage.
DNSonChain determines the final voting decision as a success
if the total voting weight of approval votes is greater than
τW/2, and vice versa. DNSonChain finally manages the
ownership based on the final voting decision, and we describe
the details in Section V.

C. Rewards and Penalties

Participants who communicate with DNSonChain incur
costs, since they need to send transactions to the underlying
blockchain and usually blockchain transactions require costs,
such as transaction fees. To encourage participation, DNSon-
Chain follows the same convention of decentralized systems
where rewards are presented to the miners/validators.

In DNSonChain, voters are incentivized by earning rewards
from voting requesters. Specifically, along with each voting
request, the voting requester (i.e., a domain owner or a cleaner)
presents a reward offer for the voters. The reward offer states
how much money it would pay for committee members who
vote for the final decision, and is escrowed at DNSonChain. No
matter what the voting result is, the rewards will be assigned to
the corresponding committee members once the voting process
is completed. However, it is possible that malicious voters
commit their votes but do not fulfill them so that the voting
process cannot be completed. In this case, DNSonChain would
apply penalties to those misbehavioral voters. To enforce this
penalty, DNSonChain locks a voter’s stakes once it commits
a vote, so that the voter cannot withdraw its stake from the
stake pool before it fulfills the vote or is penalized. Once the
penalty stakes are applied, it goes to the voters who fulfilled
their votes, and voting requesters could also take their reward
offers back.

Domain owners incentivize voters for their ownership on
DNSonChain, and cleaners incentivize voters for their cleanup
rewards. The cleanup rewards are generated from the system.
However, a malicious cleaner may launch cleanup voting
processes to legitimate domains, not for taking away its
ownership, but for abusing cleanup rewards. To prevent such
abuse behaviors, DNSonChain only rewards the cleaners who
succeeded in a cleanup voting process. The offer the cleaners
made for voters will be seen as penalties for the cleaners if
the cleanup voting process fails. On the other hand, if the
cleaner is honest, the chance that a voting process fails will
be negligible.

V. DNSONCHAIN OPERATION

DNSonChain acts as a decentralized third-party to manage
the domain ownership and host DNS records for Internet users.
It provides two functions: ownership claim and ownership
cleanup. They synchronize the domain ownership between
DNS and DNSonChain. We define the states of ownership
in Table II and illustrate the ownership lifecycle in Figure 3.

Ownership Claim. A domain owner claims the owner-
ship by sending claim voting requests (i.e., transactions) to
DNSonChain. A claim voting request initiates the claim voting
process which validates the ownership of the requester through
the majority vote. However, adversaries may manipulate votes
to compromise a voting process, e.g., by poisoning a com-
mittee member’s DNS response. To provide resistance against
such attacks, DNSonChain requires two rounds of claim voting
processes with a required interval.

The ownership claim works as follows. According to our
definition in Table II, a domain’s ownership is implicitly in
the Wild state at the initial of DNSonChain. A participant
launches the first claim voting process on DNSonChain, and
the success of such a claim voting process sets the participant
as the candidate of the domain and the domain ownership
transits to its Claiming state (¶). Then, it has to wait for the
required interval. The interval raises the bar for adversaries as
it is not feasible to compromise a nameserver for a relatively
long time (Section VI-B). After that, the candidate launches
the second claim voting process, and its success finally grants
the ownership to the candidate (i.e., the voting requester)
(·), and now the domain ownership enters the Established

state. Once domain ownership enters the Established state,
the ownership claim completes and the claim voting process
associated with the domain cannot be launched.

It is possible that an adversary accidentally succeeds in its
first claim voting process, but does not make the second one
after the required interval. If this situation happens, the domain
ownership remains its Claiming state, and the adversary does
not control the domain since it is still the candidate, not the
owner. Then, when the real owner joins, it would directly
launch the claim voting process that overrides the candidate
(¸). Still, after a required interval the real owner launches the
second claim voting process, and its success would make the
transition · happen since it is now the candidate.

TABLE II
OWNERSHIP STATES

States Explanation
Wild A domain does not have an owner or a candidate.

Claiming A domain does not have an owner, but has a
candidate.

Established A domain has an owner, but does not have a cleanup
flag.

Cleaning A domain has an owner, and has a cleanup flag.

Ownership Cleanup. There are two situations that do-
main ownership could have an inconsistency between DNS
and DNSonChain. First, the current owner of a domain on
DNSonChain used to be the actual owner of the domain on
DNS and claimed the ownership on DNSonChain, but then
the domain is expired on DNS and the domain owner does
not actively give up the domain ownership on DNSonChain.
Second, an adversary might accidentally and successfully
pass two claim voting processes to obtain domain ownership.
If those situations happen, DNSonChain needs to clean the
ownership, which will reset the domain configurations.

DNSonChain allows cleaners to clean the inconsistent own-
ership via cleanup voting processes that validate if the current
domain owner on DNSonChain is the rightful domain owner
on DNS through the majority vote. Recall that in order to hold
the ownership of a domain, the domain owner needs to have
its blockchain ID stored in the TXT record. Cleaners regularly
check if the TXT record is correctly configured. If the domain
owner fails to present its blockchain ID, it is considered that
the domain owner on DNSonChain has lost the control of
the domain on DNS. Then, its ownership on DNSonChain
should be cleaned. For the same security consideration of
the ownership claim, the ownership cleanup also requires two
cleanup voting processes with the same required interval.

In particular, the first successful voting process sets a
cleanup flag on the domain, and the domain ownership enters
the Cleaning state (¹). Then, the cleaner waits for a required
interval. During the interval, the domain owner can defend
itself by launching a claim voting process, and its success
will clear the cleanup flag, and the domain ownership returns
to its Established state (»). Otherwise, after the required
interval, the cleaner can launch the second cleanup voting
process to clean the ownership of the domain so that the
domain ownership becomes Wild again (º).

DNSonChain Usage. Once domain ownership is estab-
lished, a domain owner publishes its DNS records to DNSon-
Chain by sending one blockchain transaction. The new records
will be permanently recorded on the blockchain once the trans-
action is mined. Although the blockchain is a decentralized
system, the blockchain database is a central place that hosts all
DNS records. Therefore, DNSonChain users can synchronize
DNS records from the blockchain to its local storage to build
their local DNS databases in advance. Note that DNSonChain
users do not require encrypted traffic to build DNS databases.
This is because eavesdroppers cannot figure out meaningful

Established

Wild

ClaimingCleaning

Ownership claimOwnership cleanup

❶

❷

❸

❹

❺

❻

claim voting
cleanup voting

cleanup voting

claim voting

claim voting
VR != candidate

claim voting
VR == candidate

Fig. 3. Ownership Lifecycle. Claim/cleanup voting process must succeed to
make the transition happen. VR stands for voting requester.

information (i.e., which website a client visits) from the
synchronization except knowing that DNSonChain is used.
Once the local DNS database is built, the domain resolution
would not generate any network traffic.

Note that, to take advantage of the privacy benefits provided
by DNSonChain, a client could store a complete copy of the
DNS records of all domains locally, but it is not a must.
The implication is that a client may not visit all domains in
DNSonChain. Therefore, the client could customize its local
DNS database. To do so, the client still receives record updates
of all domains from DNSonChain so that adversaries cannot
reverse-engineer the client’s customized DNS database, but
only keeps the DNS records that the client is interested in.

VI. SECURITY ANALYSIS

The security of DNSonChain is the key to whether par-
ticipants and users would like to get involved. Technically,
adversaries may compromise the voting processes on DNSon-
Chain by either attacking the committee selection or DNS
infrastructure, resulting in the denial of service in voting
processes or the fraud of ownership conferment.

To analyze the security of DNSonChain, we first describe
our assumptions. First, we assume that miners/validators of
the underlying blockchain have no bias on DNSonChain
transactions. Also, both good and bad voters can access
the blockchain and their transactions can be added to the
blockchain within a reasonable time. In addition, we further
make specific assumptions for two particular attacks. For the
attacks on committee selection (Section VI-A), we assume
that adversaries can only possess a small fraction (e.g., up to
25%) of stakes in the system. For the attacks on DNS (Section
VI-B), we assume that the nameservers of a domain are well-
maintained so that they can be recovered within a reasonable
time (e.g., 6 hours) when under attack.

A. Attacks on Committee Selection

Threat Model. As the randomness nature of the committee
selection procedures, the number of tickets (i.e., the voting
weight) held by good and bad voters varies. By exploiting
such variance, adversaries may launch (i) DoS attacks and

0.6 0.62 0.64 0.66 0.68 0.7

threshold ()

10
-5

10
-4

10
-3

10
-2

10
-1

P
ro

b
a

b
ili

ty
 o

f
C

o
n

d
it
io

n
 1

 (
P

1
) W = 200

W = 300

W = 400

Fig. 4. Impact of the expected total voting weight
W and threshold τ on the probability of condition
1. G = 1000 and btotal = 0.2.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

Total Fraction of Bad Stakes (b
total

)

10
-6

10
-4

10
-2

P
1

(a)

W = 300

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

Total Fraction of Bad Stakes (b
total

)

200

300

400

500

600

W

(b)

P1 = 10e-4

Fig. 5. Impact of the total fraction of bad stakes
btotal on the probability of condition 1. G =
1000 and τ = 0.62.

50 100 250 500 1000 2500 5000 10000 25000

Number of Good Voters (G)

10
-4

10
-3

10
-2

10
-1

P
ro

b
a

b
ili

ty
 o

f
C

o
n

d
it
io

n
 1

 (
P

1
)

W = 200, = 0.62

W = 200, = 0.68

W = 300, = 0.62

W = 300, = 0.68

Fig. 6. Number of good voters does not impact
the probability of condition 1. btotal = 0.2.

(ii) domain takeover attacks. In a DoS attack, adversaries
choose not to commit if they are selected so that the voting
process would not enter the Fulfill stage as the total voting
weight of good voters may not be greater than or equal to
τW . It nullifies the voting process. The domain takeover
attack happens when adversaries dominate two consecutive
claim voting processes. For each of them, adversaries must
satisfy two conditions, (1) the total voting weight is greater
than τW/2, and (2) votes with at least bτW/2 + 1c voting
weight are committed before the end of the Commit stage.
However, in our analysis, we consider the worst case where the
second condition is always true. Here, we do not consider that
adversaries could take down a domain through two cleanup
voting processes because a victim domain owner can defend
itself when the domain is in the Cleaning state.

Probability of Successful Attacks. Recall that in the
committee selection, the voting weight of each voter follows a
binomial distribution. Let G and B represent the total number
of good voters and bad voters in the system, respectively. The
stake percentage of each good voter and bad voter are denoted
as gi, i = 0, 1, ..., G−1 and bi, i = 0, 1, ..., B−1, respectively.
Therefore, the total fraction of bad stakes is btotal =

∑B−1
i=0 bi.

The probability mass function (PMF) of the sum of good
voters’ voting weight is P (Gs) =

∑G−1
i=0 Binomial(W, gi),

and the PMF of the sum of bad voters’ voting weight is
P (Bs) =

∑B−1
i=0 Binomial(W, bi), where Gs and Bs denote

the voting weight held by good and bad voters, respectively.
Here we calculate the probability of two conditions for suc-
cessful attacks as follows.
• Condition 1: Gs < τW

• Condition 2: Bs > τW/2

The first condition allows adversaries to launch the DoS
attack and the second condition allows adversaries to compro-
mise one voting process. The success of a domain takeover
attack needs to satisfy the second condition twice. In the
analysis, we use P1 and P2 to denote the probability of
condition 1 and condition 2, respectively.

The distribution of Gs and Bs are the sum of independent
binomial distributions. To the best of our knowledge, the sum
of the independent and identical binomial distributions follows

a binomial distribution, but the sum of the independent but
non-identical binomial distributions does not follow a well-
known distribution. In consequence, if the percentages of
stakes among good or bad voters are equal, Gs or Bs follows
a binomial distribution, thereby the probability of conditions
can be directly calculated. In other cases, we run simulations
to study the probability.

Condition 1. To emulate the real scenarios, the stakes of
good voters are randomly distributed. In the simulation, we
set G = 1000, and later we will show that the G does not
affect the analysis results in real cases.

First, Figure 4 presents the relationship between P1 and the
expected voting weight W and threshold τ . It shows that P1
decreases as W increases, and decreases as τ decreases. When
we set W = 300 and τ = 0.62,2 P1 can be as low as 10−4,
which means that the adversaries have a negligible chance to
succeed in a DoS attack against a voting process.

We then study the impact of the btotal on P1. Figure 5(a)
shows that the P1 increases as the btotal increases. If we keep
the setup of W = 300 and τ = 0.62, the P1 increases to 3.4∗
10−3 when btotal reaches 0.25. However, we could increase
the W to keep the P1 to 10−4 as shown in Figure 5(b).

Finally, we show that the number of G does not affect the
analysis results. In Figure 6, the G spans from 50 to 50,000,
but it does not result in non-trivial changes on P1. As we
consider that the number of good voters in the system should
always be greater than 50, we conclude that the G has no
significant impact on the P1 in real cases.

Condition 2. Here, we envision that all adversaries col-
lude together, trying to distribute the stakes to multiple
pseudonyms. Note that such behavior does not change the
mean value of Bs, but it affects P2 to some extent. So,
we first study the impact of the number of pseudonyms
on P2. Here, we consider two strategies to distribute the
stakes, even distribution (bi = btotal/B, i = 0, 1, ..., B − 1)
and random distribution. For even distribution, Bs follows
Binomial(BW, btotal/B), hence we calculate the P2 from
its PMF. For random distribution, we run the simulations. In

2We empirically set τ = 0.62 for both condition 1 & 2 since it shows
proper effectiveness of voting process.

20 40 60 80 100 120 140

Number of Bad Voters (B)

10
-4

10
-3

P
ro

b
a

b
ili

ty
 o

f
C

o
n

d
it
io

n
 2

 (
P

2
) even distribution

random distribution

Fig. 7. Impact of number of bad voters on the
probability of condition 2 under even and random
distribution. W = 200, btotal = 0.2 and τ =
0.62.

0.6 0.62 0.64 0.66 0.68 0.7

threshold ()

10
-10

10
-8

10
-6

10
-4

10
-2

P
ro

b
a

b
ili

ty
 o

f
C

o
n

d
it
io

n
 2

 (
P

2
)

W = 200

W = 300

W = 400

Fig. 8. Impact of the expected total voting weight
W and threshold τ on the probability of condition
2. B = 100 and btotal = 0.2.

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

Total Fraction of Bad Stakes (b
total

)

10
-10

10
-5

10
0

P
2

(a)

W = 300

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

Total Fraction of Bad Stakes (b
total

)

0

500

1000

W

(b)

P1 = 3*10e-5

Fig. 9. Impact of the total fraction of bad stakes
btotal on the probability of condition 2. B = 100
and τ = 0.62.

Figure 7, we can see that P2 increases quickly when B is very
small. This means that when the system has a very limited
number of pseudonyms controlled by adversaries, increasing
the pseudonyms could increase the probability of a successful
attack. However, P2 converges to its upper bound very quickly
and would not have a non-trivial increase when B > 20. Also,
the even distribution has a higher P2 but the difference is not
significant. Therefore, in the following analysis, we set B to
100 and use even distribution as bad voters’ stake distribution,
which represents the worst case in our simulation.

Then, we study the impact of the expected voting weight
W and threshold τ on P2. Figure 8 shows that P2 decreases
as both W and τ increase. When W = 300 and τ = 0.62,
P2 reaches 3 ∗ 10−5, which means that adversaries have a
negligible probability of (3 ∗ 10−5)2 = 9 ∗ 10−10 to take over
a domain.

Moreover, we analyze the relationship between btotal and
P2. Figure 9(a) shows that P2 increases as btotal increases.
However, even if the P2 increases to 0.25, the success of a
domain takeover attack only has a probability of 3.5 ∗ 10−4.
Figure 9(b) presents the needed W when P2 = 3 ∗ 10−5 is
guaranteed. As btotal increases, the needed W increases.

In summary, raising the expected voting weight W would
reduce the probability of both the DoS and domain takeover
attacks. On the other hand, a higher W generally requires more
voters to be selected as committee members, hence requires
more cost to complete the voting process (cost evaluation will
be provided in Section VII-B). In addition, the selection of
threshold shows a trade-off that a higher threshold leads to
a higher probability of domain takeover attacks but a lower
probability of DoS attacks. To achieve a safe low probability
for both attacks, we will set τ = 0.62 for evaluation.

B. Impact of DNS Attacks on DNSonChain

Threat Model. The voters retrieve TXT records by sending
DNS queries. For domains without correct DNSSEC configu-
ration, voters are not able to verify the integrity of the records.
However, the adoption of DNSSEC is very low [10]. Thus,
adversaries may compromise a voting process by poisoning

the DNS responses. To takeover/takedown domain ownership,
adversaries need to compromise two voting processes.

Analysis. We consider two ways of attacks that the adver-
saries could try to compromise a voting process, the off-path
DNS poisoning and nameserver compromise.

Generally, for a successful off-path poisoning attack in
DNSonChain, an adversary needs to correctly guess the trans-
action ID and the source port of DNS queries sent from voters
who in total hold more than half of the voting weight. The
transaction ID and the source port are both 16 bits random
numbers, and it is not feasible to correctly guess them. Recent
works [8], [24] present the defragmentation cache poisoning
attack which does not need to guess the transaction ID and
source port. However, it needs to guess the IP ID value in the
IP fragmentation, which is still a very difficult challenge.

Then, we consider a scenario that an adversary compromises
a nameserver of a domain, and it can craft fake DNS responses
and send them back to the voters. However, DNS is designed to
be a robust system in which each zone should maintain at least
two nameservers with geographic/topological diversity [2],
[14], [31]. Therefore, a strategy for voters to mitigate such an
attack is to request TXT records from replica nameservers and
submit the majority one. To study how feasible this method
is, we conduct a measurement on the Alexa top 1M domains
to analyze the deployment of their nameservers. Here, we
make a rough but fair assumption that the nameservers located
in different /24 subnets are logically isolated. In doing so,
we collect the nameservers of these domains and resolve
their IP addresses. We first filter out roughly 5.7% of the
domains which do not have a nameserver. Next, we find
nameservers that are using anycast routing by matching their
IP addresses with the anycast prefix list provided in [3], [6],
[12]. We highlight anycast addresses because anycast-based
nameservers are running on multiple locations, hence they
are immune to such attacks. Finally, we group IP addresses
into /24 subnets and present the results in Figure 10. In total,
27% of the domains are using anycast-based nameservers. For
the rest of the domains, 13% of them have their nameservers
located in one /24 subnets, which are vulnerable to such at-

1 2 3 4 5 6 >=7

Number of /24 Subnets of Nameservers

0

10

20

30

40

50

60
P

e
rc

e
n

ta
g

e
 (

%
)

Unicast

Anycast

Fig. 10. Distribution of located /24 subnets of
nameservers

200 250 300 350 400

Expected Voting Weight

50

100

150

200

250

300

350

400

L
a

te
n

c
y
s

Fig. 11. Latency of voting processes with different
expected voting weight. τ = 0.62.

200 250 300 350 400

Expected Voting Weight

0

0.5

1

1.5

2

2.5

3

3.5

G
a

s
 C

o
s
t

10
7

Denied Commit

Commit

Fulfill

Fig. 12. Gas cost of voting processes with different
expected voting weight. τ = 0.62.

tacks. In addition, for the domains deploying their nameservers
in two /24 subnets, the adversary may manipulate the DNS
responses from one /24 subnet, resulting in a small chance to
compromise over half of the weighted voters. However, for
the domains that deploy their nameservers in more than two
/24 subnets, we consider that such an attack can be naturally
mitigated as voters can distinguish the authentic TXT record.

Note that compromising one voting process does not mean a
successful domain takeover/takedown since the adversary still
needs to wait for a required interval and then succeed in the
second voting process. The interval and two rounds of voting
process pose a challenge to adversaries since they have to
compromise a nameserver twice or compromise a nameserver
for a period that is longer than the required interval.

C. Recovery

Although with our design, adversaries are infeasible to
launch successful attacks, there is always a possibility that the
domain takeover/takedown can be successful. DNSonChain
allows the damage of such attacks to be recovered once the
attack is mitigated as the domain owners can take their owner-
ship back through claim voting processes and the cleaners can
remove the stale ownership with cleanup voting processes. The
time to recover the damage highly depends on the required
interval. The longer the required interval is, the harder the
adversary can succeed. However, it also requires more time
for recovery. We consider six hours as a safe period for the
voting interval while also acceptable for recovery.

VII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement DNSonChain on the Ethereum blockchain.
Ethereum is the most popular blockchain that supports
smart contracts. Ether is the cryptocurrency on Ethereum.
Ethereum introduces a concept of gas to quantify the cost of
transactions, and the gas cost will be eventually converted to
Ether. The gas cost comes from sending a transaction to the
blockchain and executing smart contracts, and it is paid by the
transaction sender.

DNSonChain consists of two smart contracts, the
DomainToken contract and the DNSonChain contract.
The contracts are written in Solidity language. The
DomainToken contract manages the tokens of participants
in DNSonChain. It complies with the ERC20 standard [35]

which defines the interfaces that operate the token contract.
The DNSonChain contract enforces the majority vote
mechanism, manages domain ownership, and hosts DNS
records. We use the keccak256 for all hash operations
in the DNSonChain contract since it is natively supported
by Ethereum and has the cheapest gas cost among other
supported hash functions.

Ethereum provides APIs that facilitate interactions be-
tween smart contracts and users. All DNSonChain participants
run applications written in JavaScript to interact with the
DomainToken and DNSonChain contract, and we use the
web3.js library to handle these API calls.

Ethereum has one Mainnet and multiple Testnets [5]. The
Mainnet is where decentralized applications will finally be
deployed, and the transactions over the Mainnet cost real
money. Conversely, Testnets are used for testing decentralized
applications, and Ether on the Testnets can be obtained
from Testnet faucets for free. Among all Testnets, the Ropsten
Testnet [19] is the best emulation for the Mainnet since they
are running the same consensus protocol (i.e., proof-of-work),
and their average block time is close. Therefore, we deploy
our system on the Ropsten Testnet for evaluation, and the
implementation can be found at [28].

B. Evaluation

We evaluate the performance of DNSonChain by answering
three questions: (1) what is the voting latency of DNSonChain?
(2) what are the costs of the participants? and (3) comparing
to DNS, what is the performance trade-off that DNSonChain
can balance?

Experiment Setup. To evaluate the performance of DNSon-
Chain, we set 1000 voters and consider all of them are good
voters. Their stakes are pre-funded and randomly chosen from
the range of [1, 100,000]. To simulate the geolocation diversity
of the voters, we employ 1000 globally distributed and long-
persistence open resolvers extracted from Censys [13], and
assign each voter an open resolver for its DNS queries.

Note that the ownership voting process and cleanup voting
process have almost the same operations except how voters de-
termine the approval vote, which does not affect the evaluation
result. Therefore, we only launch ownership voting processes
in the experiments for evaluation and the results also represent
the evaluation for cleanup voting processes.

Voting Latency. Note that Ethereum’s throughput is the-
oretically bounded by its block time and global gas limit.
However, the throughput is shared by all Ethereum users,
and the Ethereum miners may not form a block that achieves
the gas limit for each block. Therefore, the actual throughput
available to DNSonChain will be affected by the congestion
level of the Ethereum network and miners’ strategy, which is
out of our control. Therefore, the latency varies at different
times. Hence, for each test, we run one voting process every
five minutes with a total of 100 votings processes to examine
the distribution of the voting latency in real scenarios.

Figure 11 shows the relationship between the latency of
voting processes and the expected voting weight (W). The
latency increases as W grows. This is because a voting
process with a higher W selects more voters, and hence more
transactions are needed to finish the voting process. As a result,
more time is needed to mine those transactions. Overall, the
latencies remain at a low level (i.e., several minutes).

In addition to the number of transactions, the gas price
also affects latency. Gas price is the amount of Ether that
will be paid for a gas unit. For every transaction sent in
our experiment, we set the gas price to 1 Gwei (1 Gwei
= 109 Wei, and 1 Wei = 10−18 Ether.), which is the
minimum recommended gas price. Transactions with a higher
gas price are likely to be mined faster as miners may prioritize
transactions with a higher gas price. Therefore, the results in
Figure 11 represent an upper bound on the voting latency.

Gas Cost. Gas cost is what participants would pay for
interacting with DNSonChain. We extract the gas cost of
all transactions we sent in the latency experiments and find
that the gas cost of a successful Commit transaction and
Fulfill transaction is almost fixed, at 83K gas and 57K
gas, respectively, making a total of 140K gas to successfully
cast a vote. Note that a voter’s Commit transaction may get
denied if enough voting weight is received, but it still costs
27K gas for the transactions.

At the time of our experiment, the standard gas price is
3 Gwei [17]. Using this value, the the monetary cost for a
voter to complete both Commit and Fulfill stage would
be 4.2∗10−4 Ether, and monetary cost for the voter that have
a denied commitment is 8.1∗10−5 Ether. In addition, the gas
cost used by domain owners to launch a voting process is about
157K gas (4.7 ∗ 10−4 Ether) per request. Note that the gas
cost is also significantly affected by the CPU and storage usage
when executing the smart contracts, optimized implementation
may further lower the cost. Therefore, our prototype presents
an upper bound of the gas cost of DNSonChain operations.

Recall that initiating a voting process requires the requester
to present a reward offer to incentivize voters. To figure out
how much the offer should be, we examine the gas cost of
all voters for each voting process and show the results in
Figure 12. As the voting processes with different W ’s result
in different sizes of the committee, it affects the cost of a
voting process. As a result, the gas cost of a voting process
increases linearly with the increase of W . Overall, the gas cost
is at a low level. For example, when W = 300, the gas cost

of a voting process is 2.5 ∗ 107, which equals 0.075 Ether.
Consequently, a domain owner can make a reward offer greater
than such a small cost to incentivize voters.

Storage Cost. To use DNSonChain, a user needs to syn-
chronize DNS records to its local disk. As the local DNS
database can be customized, different users would have dif-
ferent storage costs. To provide a baseline of the storage cost,
we resolve Alexa top 1M domains to obtain their IP addresses
and store them in a JSON file. The size of such a file is only
43MB, and it increases linearly with the number of domains.
Therefore, the storage cost is negligible for a modern device.

Lookup and Record Propagation Delay. Users of DNSon-
Chain perform domain lookup by querying their local
databases built in advance. Compared to the lookup latency
of 10 to 300 ms in DNS, the latency of local lookup in
DNSonChain is essentially negligible.

Record propagation delay is the period from the time
when a domain owner updates a record to the time when
the updated record is available to users. In DNSonChain,
a domain owner updates DNS records by sending a single
blockchain transaction, and the records will be available to
all users once the transaction is being mined. The median
latency for a transaction to be mined on Ethereum is 29
seconds [17]. However, in DNS, users query DNS records
from their recursive resolvers, and the resolvers would cache
the stale DNS records until they expire. Therefore, the record
propagation delay is significantly impacted by the TTL of DNS
records. According to [20], [22], the TTLs of A records are
usually in the range of 5 to 60 minutes. Thus, DNSonChain
can provide a much shorter latency for propagating the record
updates to its users.

VIII. CONCLUSION

This paper presents a new blockchain-based naming service
called DNSonChain, which is compatible with the existing
DNS namespace, to fully address DNS privacy issues. DNSon-
Chain allows domain owners to hold their same domain names
on a blockchain, and thus domain owners can publish DNS
records on the blockchain. As a result, DNSonChain users can
synchronize DNS records from the blockchain to build their
local DNS databases. In DNSonChain, the name resolutions
are no longer at any privacy risks. DNSonChain introduces the
majority vote mechanism to validate the domain ownership
in a decentralized fashion. We conducted a security analysis
of DNSonChain and demonstrated that DNSonChain has a
negligible security failure probability and can recover from
various malicious attacks. Finally, we implemented a prototype
of DNSonChain and deployed it on the Ropsten network. Our
evaluation results show that the voting process can be done
within several minutes in real scenarios and the cost of a
domain owner for incentivizing the voters is small.

ACKNOWLEDGMENT

We would like to thank our shepherd Toru Hasegawa and
the anonymous reviewers for their insightful comments. This
work was supported in part by NSF grant DGE-1821744.

REFERENCES

[1] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. Block-
stack: A Global Naming and Storage System Secured by Blockchains.
In USENIX Annual Technical Conference (ATC’16), 2016.

[2] Mark Allman. Comments on DNS Robustness. In ACM Conference on
Internet Measurement Conference (IMC’18), 2018.

[3] Anycast Datasets. https://anycast.telecom-paristech.fr/dataset/, 2017.
[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS

Security Introduction and Requirements. IETF RFC 4033, 2005.
[5] Wil Barnes. Ethereum 101 - Part 6 - Mainnet & Test-

nets. https://kauri.io/article/3eba08b801a44776a07607b9e046dd08/ethe
reum-101-part-6-mainnet-and-testnets, 2019.

[6] Rui Bian, Shuai Hao, Haining Wang, Amogh Dhamdere, Alberto Dain-
otti, and Chase Cotton. Towards Passive Analysis of Anycast in Global
Routing: Unintended Impact of Remote Peering. In ACM SIGCOMM
Computer Communication Review (CCR), 2019.

[7] Bitcoin. https://bitcoin.org.
[8] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael

Waidner. Domain Validation++ For MitM-Resilient PKI. In ACM
Conference on Computer Communication Security (CCS’18), 2018.

[9] Brantly Millegan. Step-by-Step Guide to Importing a DNS Domain
Name to ENS. https://medium.com/the-ethereum-name-service/step-
by-step-guide-to-importing-a-dns-domain-name-to-ens-d2d15feb03e8,
2021.

[10] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M. Maggs, Alan
Mislove, and Christo Wilson. A Longitudinal, End-to-End View of
the DNSSEC Ecosystem. In USENIX Security Symposium (USENIX
Security’17), 2017.

[11] Taejoong Chung, Roland van Rijswijk-Deij, David Choffnes, Dave
Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. Understand-
ing the Role of Registrars in DNSSEC Deployment. In ACM Conference
on Internet Measurement Conference (IMC’17), 2017.

[12] Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and
Dario Rossi. Characterizing IPv4 Anycast Adoption and Deployment.
In ACM Conference on Emerging Networking Experiments and Tech-
nologies (CoNEXT’15), 2015.

[13] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and
J. Alex Halderman. A Search Engine Backed by Internet-Wide Scan-
ning. In ACM Conference on Computer and Communications Security
(CCS’15), 2015.

[14] R. Elz, R. Bush, S. Bradner, and M. Patton. Selection and Operation of
Secondary DNS Servers. IETF RFC 2182, 1997.

[15] ENS. https://ens.domains/.
[16] ENS. https://docs.ens.domains/dns-registrar-guide.
[17] ETH Gas Station. https://ethgasstation.info/.
[18] Ethereum. https://www.ethereum.org/.
[19] Ethereum. Ropsten testnet PoW chain. https://github.com/ethereum/ro

psten, 2018.
[20] Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip Porras, Shalini

Ghosh, Jian Jiang, and Haixin Duan. An Empirical Reexamination of
Global DNS Behavior. In ACM SIGCOMM Conference (SIGCOMM’13),
2013.

[21] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-
lai Zeldovich. Algorand: Scaling Byzantine Agreements for Cryptocur-
rencies. In ACM Symposium on Operating Systems Principles (SOSP
’17), 2017.

[22] Shuai Hao, Haining Wang, Angelos Stavrou, and Evgenia Smirni. On
the DNS Deployment of Modern Web Services. In IEEE International
Conference on Network Protocols (ICNP’15), 2015.

[23] Shuai Hao, Yubao Zhang, Haining Wang, and Angelos Stavrou. End-
Users Get Maneuvered: Empirical Analysis of Redirection Hijacking in
Content Delivery Networks. In the 27th USENIX Security Symposium
(USENIX Security’18), 2018.

[24] Amir Herzberg and Haya Shulman. Fragmentation Considered Poi-
sonous, or: One-domain-to-rule-them-all.org. In IEEE Conference on
Communications and Network Security (CNS’13), 2013.

[25] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). IETF
RFC 8484, 2018.

[26] Rebekah Houser, Zhou Li, Chase Cotton, and Haining Wang. An
Investigation on Information Leakage of DNS over TLS. In ACM
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2019.

[27] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
Specification for DNS over Transport Layer Security (TLS). IETF RFC
7858, 2016.

[28] Lin Jin. https://github.com/lin-jin/decentralize-dns.
[29] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. Understanding

the Impact of Encrypted DNS on Internet Censorship. In The Web
Conference (WWW), 2021.

[30] Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and
Arvind Narayanan. An Empirical Study of Namecoin and Lessons for
Decentralized Namespace Design. In Workshop on the Economics of
Information Security (WEIS’15), 2015.

[31] P. Mockapetris. Domain Names - Concepts and Facilities. IETF RFC
1034, 1987.

[32] Namecoin. https://namecoin.org/.
[33] Haya Shulman. Pretty Bad Privacy: Pitfalls of DNS Encryption. In

Workshop on Privacy in the Electronic Society (WPES’14), 2014.
[34] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and

Carmela Troncoso. Encrypted DNS –> Privacy? A Traffic Analysis
Perspective. In Network and Distributed System Security Symposium
(NDSS), 2020.

[35] Fabian Vogelsteller and Vitalik Buterin. EIP 20: ERC-20 Token
Standard. https://eips.ethereum.org/EIPS/eip-20, 2015.

[36] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. Connection-Oriented DNS to Improve Privacy and
Security. In IEEE Symposium on Security and Privacy (S&P’15), 2015.

