
Silent Observers Make a Difference: A Large-scale
Analysis of Transparent Proxies on the Internet

Rui Bian∗, Lin Jin∗, Shuai Hao†, Haining Wang‡, Chase Cotton∗
∗University of Delaware, Newark, DE, USA

†Old Dominion University, Norfolk, VA, USA
‡Virginia Tech, Arlington, VA, USA

{bianrui, linjin, ccotton}@udel.edu, shao@odu.edu, hnw@vt.edu

Abstract—Transparent web proxies have been widely deployed
on the Internet, bridging the communications between clients and
servers and providing desirable benefits to both sides, such as
load balancing, security monitoring, and privacy enhancement.
Meanwhile, they work silently as clients and servers may not be
aware of their existence. However, due to their invisibility and
stealthiness, transparent proxies remain understudied for their
behaviors, suspicious activities, and potential vulnerabilities that
could be exploited by attackers. To better understand transparent
proxies, we design and develop a framework to systematically
investigate them in the wild. We identify two major types of
transparent web proxies, named FDR and CPV, respectively.
FDR is a type of transparent proxy that independently performs
Forced DNS Resolution during interception. CPV is a type of
transparent proxy that presents Cache Poisoning Vulnerability.
We perform a large-scale measurement to detect each type of
transparent web proxy and scrutinize their security implications.
In total, we observe 32,246 FDR and 11,286 CPV cases through
our acquired vantage points. We confirm that these two types
of transparent proxies are distributed globally — FDRs are
observed in 98 countries and CPVs are observed in 51 countries.
Our work highlights the issues of vulnerable transparent proxies
and provides insights for mitigating such problems.

Index Terms—Web Proxy, DNS, Cache Poisoning

I. INTRODUCTION

Transparent proxies [1]–[5] are one type of web proxy
servers [6]–[14] that relay the traffic between clients and
servers. Transparent proxies intercept requests and responses
between clients and web servers, but clients and web servers
may not be aware of the existence of transparent proxies. The
transparent proxies are typically deployed by ISPs (Internet
Service Providers) and enterprises or are enabled as a function
on the user-side devices such as home routers so that the
proxy servers can monitor, filter, and censor the traffic [15]–
[18]. Moreover, by caching the contents [19]–[23], transparent
proxies can reduce the traffic volume effectively. However,
transparent proxies may be legacy proxies that are not well-
managed and updated. Transparent proxies may be vulnerable
to known attacks such as cache poisoning [24] and Denial of
Service attacks. There are only a few prior types of research
measuring and studying transparent web proxies [2], [3].

Previous research has delved into the analysis of transparent
proxies and their effects on network traffic. Xu et al. [2]
examined the behavior of transparent web proxies in major US
cell carriers, while Zhang et al. [3] investigated HTTP traffic

manipulation by transparent proxies in China-wide networks,
including the injection of advertisements and privacy concerns.
In a similar vein, Mi et al. [25] and Yang et al. [26] explored
residential proxy ecosystems, uncovering security issues as-
sociated with potentially unwanted programs. However, our
study distinguishes itself by focusing specifically on a global
measurement study of residential transparent proxies. By ex-
amining their prevalence and behavior on a broader scale, we
aim to provide a comprehensive understanding of the security
implications and impact of residential transparent proxies in
the modern Internet landscape.

In this study, we investigate an overlooked issue of web
browsing, the stealthy interception by on-path devices, espe-
cially transparent proxies, which is not yet thoroughly studied
and well understood. HTTP queries from clients would be
ultimately handled by the requested web servers. However,
if intermediate transparent proxies intercept the queries but
understand/process the requests differently from the web
servers, the responses could be different from the desired
results, which may cause potential risks. More importantly,
such HTTP interception performed by transparent proxies are
not authorized by users and are difficult to detect on the
user’s side, which leads to security and ethical concerns. Such
proxies often lack proper maintenance (e.g., equipped with
outdated software), in comparison to those web servers of
a well-known domain. Moreover, users’ personal information
may be exposed to rogue transparent proxy owners, thereby
causing privacy leakage.

To this end, we develop novel techniques to detect trans-
parent proxies on the Internet on a large scale. In particular,
we scrutinize the transparent proxies that could be vulnerable
to malicious attacks like various cache poisoning attacks. Our
study investigates the magnitude of such problems, character-
izes different aspects of transparent proxies, and assesses the
impact on end-users. Furthermore, we provide insights into the
mitigation of potential vulnerabilities.

Challenges. There are three main challenges that we need to
address for systematically analyzing transparent proxies. (1)
It is difficult to detect the presence of the transparent proxy
because its IP address may only be visible to the backend web
servers, not the clients. In other words, we can only observe
the IP addresses of transparent proxies from the server side. (2)

Another challenge is to acquire clients belonging to different
locations and Autonomous Systems (ASes) to perform large-
scale measurements, which also should allow fine-tuning of
the measurement parameters. (3) To detect the caching effects
of transparent proxies, we need to carefully choose the domain
names because not all domain names will be equally cached
by transparent proxies. The requested URLs should also be
carefully crafted to avoid affecting normal Internet users and
web servers.

Our approach. To address these challenges, we design and
develop a novel measurement methodology and apply it to a
large-scale experiment. We utilize a residential proxy network
based on TCP SOCKS which provides over 600K unique resi-
dential IP addresses [27] across more than 200 countries. This
comprehensive coverage allows us to understand transparent
proxies from a worldwide point of view.

To verify the interception of transparent proxies, we deploy
dedicated web servers and controlled domain names. Each
vantage point is instructed to send HTTP requests to a list
of domains and query non-existent files under and without
our control, but the destination IP address is our controlled
server, e.g., URL: http://a.b.c.d/UUID.[css|jpg] and
host: example.com, where a.b.c.d is our controlled server
IP address. Since each requested file UUID.[css|jpg] is
non-existent, it cannot be cached by transparent proxies when
the first request is received. In addition, because of the non-
existent requested file, it does not affect other clients. To
increase the success rate of caching detection, Alexa’s [28] top
200 domain names are selected as the domain test list because
of their popularity. We also added one of our controlled
domain names to the domain test list to obtain the IP addresses
of transparent proxies.

Contributions. The major contributions of this work are
summarized below:

• Understanding: We systematically measure HTTP inter-
ceptions by transparent proxies and investigate their scale,
behaviors, and security implications.

• Methodology: We design novel approaches to conduct
a large-scale analysis to characterize HTTP interception
through 951,877 residential IP addresses worldwide ac-
quired over 10 months.

• Findings: We identify that thousands of transparent prox-
ies perform forced DNS resolution to intercept HTTP
traffic and are vulnerable to cache poisoning attacks. Be-
sides the vulnerability we examined, transparent proxies
are also vulnerable to other malicious attacks, such as
CPDoS (Cache Poisoned Denial of Service).

II. BACKGROUND AND THREAT MODEL

In this section, we begin with an overview of how trans-
parent proxies intercept HTTP requests. Then, we present our
threat model, which focuses on vulnerable transparent proxies.

A. HTTP and Transparent Proxy

HTTP. HTTP is an Internet protocol enabling data transfer
between a client and a web server. Clients make resource
requests via a Uniform Resource Locator (URL) such as
‘http://www.example.com/sample.css’, or an IP ad-
dress, like ‘http://127.0.0.1/sample.css’.

Upon receipt of a request, the server selects an appropriate
variant of the resource – known as a representation – to return
to the client. The selection process is guided by HTTP header
fields that contain additional context and metadata about
the request or response. For example, a client may specify
preferred media formats through headers, and the server may
indicate the media format of the returned resource. The Host

header is particularly important as it identifies the server’s host
and port number. If the port number isn’t explicitly provided,
default values (e.g., 80 for HTTP, 443 for HTTPS) are used.

Transparent Proxy. A transparent proxy, also known as an
intercepting proxy, inline proxy, or forced proxy, intercepts
normal application-layer communication without requiring any
special client configuration. The existence of the proxy need
not be made known to clients as it is typically located between
the client and the Internet, performing some of the functions
of a gateway or router.

Intercepting proxies are often used in businesses to enforce
acceptable use policies and to reduce administrative overhead
as no client browser configuration is required.

ISPs in some countries use intercepting proxies to save
upstream bandwidth and improve customer response times by
caching [2], [3], [29], [30]. This is especially prevalent in
countries where bandwidth is limited or must be paid for.

B. CPDoS: Cache Poisoned Denial of Service

In this study, we also studied transparent proxies that could
be exploited by adversaries. In particular, we identified that
many proxies are vulnerable to the CPDoS (Cache Poisoned
Denial of Service) attacks [24], a new category of web cache
poisoning attacks aimed at disabling web resources.

CPDoS attacks operate in five steps: 1) An attacker sends an
HTTP request containing a malicious header toward a resource
hosted on web servers. This request passes through an interme-
diate cache with the malicious header remaining unnoticed. 2)
The cache forwards the request to the origin server if it lacks
a fresh copy of the targeted resource. Upon arrival, the origin
server encounters an error while processing the request due to
the embedded malicious header. 3) Consequently, the origin
server returns an error page that the cache stores in place of
the requested resource. 4) The attacker can then ascertain the
success of their attack by retrieving the cached error page from
the cache. 5) Subsequent requests from legitimate users for the
target resource result in the cache serving the stored error page
instead of the original content.

CPDoS attacks can be exploited through various vectors
of HTTP header semantics, including HTTP Header Oversize
(HHO), HTTP Meta Character (HMC), and HTTP Method
Override (HMO). HHO involves sending oversized headers

that exceed cache limits, causing error messages. HMC entails
sending HTTP headers carrying harmful meta-characters like
line break (\n), carriage return (\r), or bell (\a). HMO entails
sending headers that override methods such as DELETE
and PUT, which are typically prohibited by web servers. In
this study, we employ these three CPDoS attack vectors to
scrutinize transparent proxies.

C. Threat Model

Our threat model is shown in Figures 1 and 2. We assume
that transparent proxies are present on the path and can
intercept the HTTP requests that are originally sent to the web
servers. The transparent proxies forward the requests based
on their own HTTP understanding and configuration (e.g.,
forward requests based on IP addresses in original requests
or forward requests based on the IP address from their forced
DNS resolutions using the domain name in the host header).
After the responses are received by transparent proxies, the
transparent proxies send the responses to the clients. To
this end, from a client’s perspective, HTTP responses appear
to come from the original web servers, making the actual
interception behaviors difficult to detect.

Specifically, transparent proxies may handle HTTP requests
differently, which could result in clients receiving responses
from different web servers. In Figure 1, if transparent proxies
simply forward the client’s request, the request will reach the
destination specified in the HTTP request (shown as Server
Victim). However, in this study, we identify that many trans-
parent web proxies would perform their own DNS resolution
and replace the destination IP address based on the resolution
answer, resulting in the request being sent to a different server
(i.e., Server Attacker). We refer such case as Forced DNS
Resolution (FDR) in this work.

Moreover, transparent proxies usually cache frequently used
static content such as HTML, images, or CSS files, which can
cause significant issues. As shown in Figure 2, attackers can
inject content into transparent proxies and deceive them into
caching the malicious content. In doing so, attackers specify
the victim domain name (hosted by Server Victim) in the Host
header but craft the IP packet with the destination as a server
under the attacker’s control (i.e., Server Attacker). If the proxy
does not perform a separate DNS resolution like the FDR case
in Figure 1, the proxy will contact Server Attacker to fetch
the required content. As a result, such content offered by the
attacker will be cached and then returned to subsequent clients
who send requests to Server Victim. Figure 4 illustrates the
detailed request/response flow.

The objective of this study is to conduct large-scale data
analysis to measure and characterize transparent proxies. Dur-
ing our research, we could inject selected content into trans-
parent proxies and deceive them into caching the malicious
content. If other users utilize the same transparent proxy and
request the same content, the proxy may return our injected
content from its cache. Therefore, we need to carefully manage
our experiments to reduce the impact on other users. We
discuss ethical considerations in Section III-E.

Fig. 1. HTTP interception caused by transparent proxy

Fig. 2. Cache poisoning caused by transparent proxy

III. METHODOLOGY AND DATA COLLECTION

This section presents our proposed methodology and data
collection to address the challenges presented in Section I. We
first provide an overview of our approach and the design re-
quirements, and then delve into the details of our measurement
framework and the workflow to identify vulnerable transparent
proxies. Finally, we present the ethical considerations.

A. Overview

First, we describe our methodology for detecting transparent
proxies on the Internet and identifying potential interceptions
by those proxies that are vulnerable to the above attacks.

Approach. Transparent proxies are able to monitor and
intercept HTTP requests and forward them to the web servers.
During interception, transparent proxies parse and reconstruct
HTTP request messages before sending them to the web
server. Ordinarily, the Host header is mapped to the destination
IP address, ensuring that requests reach the correct server.
However, if the Host header is not correctly mapped to the
destination IP address, the situation becomes complicated.
When there are no transparent proxies, requests are directly
sent to the correct server based on the destination IP address.
However, if there is an on-path transparent proxy, it may
forward requests to a web server that matches the domain
name by performing DNS requests and redirecting them to
the IP address of the requested domain based on its DNS
resolution result (i.e., an FDR case).

Figure 3 illustrates the request/response flow produced by
such FDR transparent proxies. In packet ①, a client sends

Fig. 3. Request/Response flow produced by FDR proxies

a request using Server A’s IP address as the destination IP
and Server B’s domain as the Host header. The transparent
proxy performs DNS resolution and changes the destination
IP to Server B’s IP address in packet ②. Server B’s content is
returned to the client through packets ③ and ④.

In addition, we discovered another type of transparent proxy
that is more vulnerable. This type of proxy forwards requests
based on the destination IP address and caches the responses
using the Host header as the cache key, which is a unique
identifier for each object in the cache. When there is a cache
hit, the requested object is served to clients from the proxy’s
cache, which can be used to inject content into the cache. To
test for this vulnerability, we send an HTTP request with our
server as the destination IP address and a different domain
name as the Host header to inject our content into the proxy’s
cache. Next, we send a second request with the earlier Host
headers but a matching destination IP address to validate if we
can receive the cached content for normal HTTP queries. If we
receive the same responses as before, we can infer the presence
of a transparent proxy with cache poison vulnerability. We
refer to this type of transparent proxy as CPV – transparent
proxy with Cache Poison Vulnerability.

Note that we could inject our contents into any web server
using transparent proxies by changing the Host headers to any
domain name. The request/response flows produced by CPV
transparent proxies are shown in Figure 4. Packet ① shows
a client sending an HTTP request to the transparent proxy.
The request includes Server A’s IP address as the destination
IP and Server B’s domain as the Host header. The transparent
proxy forwards this request to Server A in ②. Server A returns
a response to the transparent proxy, which is then stored in the
proxy’s cache. Packet ④ shows the transparent proxy returning
the cached content to the original client. Later, another client
sends a request with Server B’s IP address and domain name,
as shown in packet ⑤. The transparent proxy recognizes the
request as a cache hit since it matches the cached object’s
cache key (which is based on the Host header). The proxy
returns the cached content to the client using packet ⑥.

Given these two types of transparent proxies, we perform
probing tests to identify their presence by the following steps:

1). Instruct a client to send an HTTP request with the victim
server’s Host header and our controlled attacker server’s IP

Fig. 4. Request/Response flow produced by CPV proxies

address as the destination IP address. We record the corre-
sponding responses on the client side and both the attacker
and victim server side.

2). We retrieve the content of the response received by
the client. If the content is a 404 error message, we classify
this as an FDR interception case – a transparent proxy with
forced DNS resolution, as the response file would be the static
payload we set up if the request reaches our control server.

3). Instruct a client to send an HTTP request with the victim
server’s Host header to the victim server.

4). If the client receives the attacker server’s content, we
compare the IP address in the attacker server’s log with
the client’s IP address. If the two IP addresses differ, we
classify it as CPV – a transparent proxy with cache poisoning
vulnerability.

Design requirements. Our methodology must meet several
requirements to ensure valid results. First, to avoid caching,
each request from the client must query a different resource.
Second, since we capture packets separately from clients and
web servers, we must be able to correlate a request from a
client with one captured by our web server. We address this is-
sue by uniquely prefixing each requested file name. Third, our
study requires diverse clients capable of sending HTTP packets
directly to the specified web servers with the specified domain
name. Fourth, to study interception characteristics in-depth, the
vantage points must issue diversified HTTP requests, including
requests of different methods and headers. The measurement
infrastructure used by previous works, including advertising
networks, HTTP proxy networks, and Internet scanners, does
not meet the requirements.

B. Methodology

1) Experiment Setup: To perform the experiments to iden-
tify the transparent proxies, we arranged two distinct servers:
Server A, a reference web server under our control, and
Server B, a victim server that may or may not be under our
control. Server A is configured to consistently deliver static
text content in response to any request, irrespective of whether
the requested host and file were found or not. This operation
aims to deceive transparent proxies into caching this content.

As part of the experiments, we initiated HTTP requests to
our controlled servers as illustrated in Figure 3 and 4. If the

transparent web proxies cached the content and primarily used
the Host header as the cache key instead of the IP address,
clients might receive content from the attacker’s server rather
than the victim’s. However, this was not our desired outcome.
To boost the chance of caching, we set Server A to emit
Cache-Control headers, marking the content as cacheable for
an extended duration.

On the other hand, Server B acts as a typical web server,
returning standard responses. In cases where the requested
host and files were not identified, Server B responded with
corresponding error messages. This server could either be one
within our control or a web server beyond our management.
It is noteworthy that transparent proxies have specific policies
and configurations regarding domain selection for caching,
and higher-traffic websites have a greater likelihood of being
cached. To accommodate this factor, we used domain names
from Alexa’s top 200 domain list, and a domain name under
our control for Server B.

2) Generating HTTP Requests: In this study, we address
the issue of inconsistent source IP addresses between a client’s
original request and the corresponding request relayed by the
transparent proxy. We tackle this by linking these requests
by creating a unique file name that includes a distinct UUID
(universally unique identifier) generated for each client and a
file extension such as CSS or JPG.

To conduct our experiments, we constructed two types of
HTTP requests. For the first type of request, the destination
IP is set as our controlled server’s address (i.e., the attacker)
and the control server would reply with a static response to
all HTTP requests. The Host field is set to the domain of a
different web server (i.e., the victim server) and the Path field
is set to the UUID + file extension (e.g., [UUID].css). The
UUID labels requests and vantage points (clients), while the
file extension indicates the file types that can be cached by
proxies. One example request is

HTTP Query:
DST IP: IP address of the Server A
Host: Domain name of the Server B
Path: /UUID.css

For the second request, the host is the victim server’s
domain name, and the destination IP address is changed to
the victim server’s IP address. The path is the same as in the
first request: UUID + file extension. The UUID is identical to
that used in the first request, while the file extension remains
the same as in the first request. One example request is

HTTP Query:
DST IP: IP address of the Server B
Host: Domain name of the Server B
Path: /UUID.css

C. Vantage Points

Our study requires a large number of globally distributed
clients capable of sending customized HTTP requests. To
achieve this, we leveraged a residential proxy network called
ProxyRack [27] which is based on TCP SOCKS.

Fig. 5. Geo-distribution of vantage points

SOCKS proxy networks allow us to send HTTP packets
directly from globally distributed clients, providing a global
landscape of distributed transparent proxies. When our re-
quests are sent by our client, an entry node receives and
forwards the requests to exit nodes distributed across the
world. The exit nodes, which serve as our vantage points, will
be responsible for sending requests to the servers and relay
the responses back to the client.

As we can only interact with the SOCKS proxy platform,
we cannot directly obtain the IP addresses of the vantage
points (i.e., the exit nodes). In this study, we use an indirect
method to obtain the vantage point IP addresses. Before each
test, we send a request to the IP geolocation service (e.g., IP-
API.com [31]) through ProxyRack, which will typically return
a response including the query IP address (vantage point IP),
its geolocation, AS number, and other information.

D. Data collection and Dataset

Our dataset, as summarized in Table I, consists of HTTP
traffic collected from 951,877 residential IP addresses globally.

Format of dataset. To perform the correlation analysis and
identify the existence of transparent proxies on the path, we
issue HTTP requests from clients, monitor web server logs,
and capture HTTP requests. For each HTTP request, we store
the collected data in a JSON format which includes the source
IP address, timestamp, method, URL, headers, user agent, and
requested domain name at our controlled web servers.

Geo-distribution of clients. Using the ProxyRack proxy
network, we are able to obtain vantage points globally. The
geo-distribution of distinct IPs provides an evaluation of our
clients. Our collected clients span more than 951,877 unique
addresses across 205 countries and 10,145 ASes. As shown in
Figure 5, our clients cover most countries in the world, with
Thailand, South Korea, Russia, Japan, and the United States
having the highest numbers of clients.

E. Ethical Considerations

In designing and conducting our study, we have taken
ethical considerations seriously to protect users from potential
side effects that may arise from our experiments.

The residential proxy network, ProxyRack, which we uti-
lized in this study, is a commercial service that invites users
to participate in the business for profit. The owners of exit
nodes have an agreement with ProxyRack that authorizes

TABLE I
STATISTICS OF COLLECTED DATASET

IP # AS # ISP # /24 pref # /16 pref # country
951,877 10,145 14,657 320,444 22,672 205

TABLE II
STATISTICS OF VANTAGE POINTS WITH OBSERVED FDR AND CPV

PROXIES

FDR CPV
IP 32,246 11,286
AS 1,458 226
ISP 2,018 257

Countries 98 51
/24 prefix 21,437 2,542
/16 prefix 3,690 474

ProxyRack traffic to exit from their hosts. Therefore, launching
HTTP requests from ProxyRack complies with the permission
granted by the exit node owners.

We also carefully crafted our HTTP requests and restricted
their quantity to prevent excessive network traffic. In our
experiments, traffic goes to the victim web server only when
FDR transparent proxies exist. Otherwise, most traffic gener-
ated by our tests is directed to our controlled web servers.
Additionally, our controlled server returns only static contents
that are harmless. We use UUID as the requested file name
to avoid interfering with other users who share the same
transparent proxy.

By adopting these approaches, we believe we have largely
mitigated potential impacts on users’ privacy and security in
our experiments.

IV. TRANSPARENT PROXY INTERCEPTION ANALYSIS

In this study, we aim to conduct a global measurement
of transparent proxies. We present our measurement results
and analysis, showcasing the landscape and characteristics of
transparent proxies.

A. Scope and Magnitude

We conducted our global-scale measurement from Septem-
ber 2021 to June 2022, performing a total of 1,401,567 scans.
During these scans, we identified that 32,246 vantage points
are vulnerable to FDR transparent proxies in 1,458 ASes, and
11,286 vantage points from 226 ASes are exposed to CPV
transparent proxies. For ISPs, we found 2,018 ISPs vulnerable
to FDR and 257 ISPs vulnerable to CPV, respectively. Fur-
thermore, we observed FDR proxies in 98 countries and CPV
proxies in 51 countries. Additional details are presented in
Table II. Based on these findings, we observed more instances
of FDR cases than CPV cases, and FDR cases are also more
widely distributed than CPV cases.

B. AS-level Analysis

We observed FDR cases in 1,458 ASes globally. The statis-
tics of AS distribution indicate that FDR transparent proxies
are spread across many ASes. However, the distribution is also
highly imbalanced, with most of the observed cases located in

TABLE III
TOP 10 ASES THAT HAVE THE MOST VANTAGE POINTS IMPACTED BY THE

FDR TRANSPARENT PROXIES

AS number Organization #IP
AS9318 SK Broadband Co Ltd 7,833

AS17552 True Online 3,586
AS45758 Triple T Internet 1,850
AS45629 JasTel Network International Gateway 1,417
AS4766 Korea Telecom 758

AS45758 Triple T Broadband 758
AS58224 Iran Telecommunication Company PJS 631
AS44208 Farahoosh Dena PLC 626
AS25019 Saudi Telecom Company JSC 600
AS17858 LG POWERCOMM 509

TABLE IV
TOP 10 COUNTRIES THAT HAVE THE MOST VANTAGE POINTS IMPACTED

BY THE FDR TRANSPARENT PROXIES

Country #IP
South Korea 10,265
Thailand 8,942
Iran 4,137
Russia 2,924
India 1,447
Bangladesh 782
Saudi Arabia 775
United Arab Emirates 490
Taiwan 389
China 376

only a few ASes. This is reflected in the long-tail distribution
of ASes, where 681 (46.7%) of ASes have only one case with
an observed transparent proxy.

Table III shows the top 10 ASes that FDR transparent
proxies belong to. AS9318 (SK Broadband Co Ltd), AS17552
(True Online), and AS45758 (Triple T Internet/Triple T Broad-
band) are the top three ASes with the most observed vantage
points with FDR transparent proxies. The distribution of ASes
of FDR transparent proxies indicates that HTTP interception
by transparent proxies is prevalent on the global Internet.

C. Country-level Analysis

We observed FDR transparent proxies in 98 countries and
regions globally, indicating that almost half of the countries
are affected by this type of vulnerable transparent proxies. The
wide distribution of vulnerable transparent proxies highlights
that this vulnerability is a global security issue, not confined
to certain countries/regions. Table IV presents the top 10
countries with the most vantage points with observed FDR
transparent proxies. The majority of the observed proxies are
in South Korea, Thailand, Iran, Russia, and India.

D. Domain Selection Analysis

In our experiments, we selected 201 domain names to
detect FDR transparent proxies, including Alexa’s top 200
domains and one of our controlled domains. Table V presents
the top domain names that trigger FDR transparent proxies.
Interestingly, some of the top domain names are related to
adult content, suggesting that transparent proxies may be more
likely to be triggered by such illicit web sites.

TABLE V
TOP 10 DOMAIN NAMES WHICH TRIGGER FDR TRANSPARENT PROXIES

Domain name # Triggered Interception
xhamster.com 116,660

chaturbate.com 113,063
xnxx.com 108,724

bet365.com 108,476
bongacams.com 108,040

pornhub.com 107,805
xvideos.com 101,129
bet9ja.com 22,896

livejasmin.com 18,670
6.cn 12,412

TABLE VI
TOP 10 ASES THAT HAVE THE MOST VANTAGE POINTS IMPACTED BY THE

CPV TRANSPARENT PROXIES

AS number Organization #IP
AS45629 JasTel Network International Gateway 8,255
AS45758 Triple T Internet/Triple T Broadband 1,739
AS45758 Triple T Broadband Public Company Limited 596
AS23969 TOT Public Company Limited 86
AS4766 Korea Telecom 78
AS30722 Vodafone Italia S.p.A. 58

AS131090 CAT TELECOM Public Company Ltd 31
AS133481 AIS Fibre 26

AS4760 HKT Limited 21
AS17552 True Online 21

V. TRANSPARENT PROXY CACHE POISONING ANALYSIS

In this section, we analyze observed CPV transparent prox-
ies in our measurements. In total, 11,286 IPs are identified to
be exposed to the vulnerability of CPV transparent proxies.

A. AS-level Analysis

We observed CPV transparent proxies in 226 ASes, showing
that such a problem is also prevalent. On the other hand, the
distribution is very imbalanced with most of the observed cases
located in only a few ASes. The distribution of ASes follows
a long-tail distribution, with 149 (65.5%) of ASes having
only one observed vulnerable transparent proxy. Table VI
shows the top 10 AS that CPV transparent proxies belong to.
AS45629 (JasTel Network International Gateway), AS45758
(Triple T Internet/Triple T Broadband), and AS23969 (TOT
Public Company Limited) are the top three ASes with the
most observed transparent proxies, and all these ASes are from
Thailand. AS4766 (Korea Telecom) and AS30722 (Vodafone
Italia) have also been observed with more than 50 identified
CPV transparent proxies. This means that clients in these
ASes have a higher possibility of using those vulnerable CPV
transparent proxies.

B. Country-level Analysis

Our analysis revealed the presence of CPV transparent
proxies in 51 countries or regions worldwide, indicating that
approximately one-quarter of all countries are affected by this
vulnerability. This widespread distribution underscores the fact
that CPV transparent proxies constitute a global security issue,
rather than a problem limited to certain regions.

TABLE VII
TOP 10 COUNTRIES THAT HAVE MOST VANTAGE POINTS IMPACTED BY

THE CPV TRANSPARENT PROXIES

Country #IP
Thailand 10,772
South Korea 87
Italy 64
Ukraine 41
Russia 40
Japan 36
Hong Kong 28
United States 23
Canada 22
Iran 16

TABLE VIII
TOP 10 DOMAIN NAMES THAT TRIGGER VULNERABLE TRANSPARENT

PROXIES

Domain name # Triggered Interception
netflix.com 14,854
spotify.com 7,625
speedtest.net 2,374

instagram.com 1,708
microsoft.com 1,079

vk.com 875
wordpress.com 638

ikea.com 628
tribunnews.com 177

csdn.net 175

Table VII provides an overview of the top 10 countries
with the highest number of vantage points with observed CPV
transparent proxies. Thailand has the highest percentage of
CPV proxies, accounting for 95.44% of all observed cases,
followed by South Korea, Italy, Ukraine, and Russia.

C. Domain Selection Analysis

For our experiments, we selected 201 domain names to de-
tect vulnerable transparent proxies. Table VIII displays the top
domain names that triggered CPV transparent proxies during
our analysis. Notably, Netflix.com was the most commonly
affected domain, followed by Spotify.com, Speedtest.net, In-
stagram.com, and Microsoft.com.

Several of these websites offer audio/video streaming or file-
sharing services, which typically generate significant amounts
of Internet traffic. Thus, we speculate that ISPs may configure
transparent proxies to cache the content of these domains to
conserve bandwidth, decrease traffic, and reduce costs.

D. Transparent Proxy Server Analysis

To gather more information on transparent proxies, we em-
ploys Nmap [32] to conduct scans and collect data. Here, we
present the data we collected on the transparent proxy servers,
including information on the operating system, services, and
products (device information).

Operating Systems. Our analysis revealed the presence of
139 different operating systems among the transparent proxies
we scanned. Table IX displays the top 10 most common
operating systems, with the HP P2000 G3 NAS device OS
being the most prevalent.

TABLE IX
TOP 10 OPERATING SYSTEMS OF CPV TRANSPARENT PROXY SERVERS

Operating System # of IP
HP P2000 G3 NAS device 419
MikroTik RouterOS 6.36 227

Linux 2.6.18 - 2.6.22 94
OpenWrt Kamikaze 7.09 (Linux 2.6.22) 75

Linux 3.10 - 4.11 62
Fortinet FortiGate 100D firewall 41

ProVision-ISR security DVR 41
Linux 2.6.32 - 3.13 32

OpenWrt 0.9 - 7.09 (Linux 2.4.30 - 2.4.34) 25
Crestron XPanel control system 24

Notably, Linux and Microsoft Windows emerged as the
most widely used operating systems among transparent proxy
servers. However, a significant number of these systems were
found to be outdated and vulnerable to attacks. These vulnera-
bilities, such as those documented in Common Vulnerabilities
and Exposures (CVE), can be exploited by attackers to com-
promise the security of transparent proxies.

Services and Devices. Although we were only able to identify
a limited number of transparent proxies, we were still able to
gather some valuable information through our Nmap scans.
Detecting service and product information for ISP transparent
proxies can be challenging, but we were able to identify some
client-side devices that also perform the functionalities of
transparent proxies.

Our analysis revealed that HTTP was the most common
service utilized by transparent proxy servers. Additionally, we
found that a set of products from MikroTik, Huawei, Apple,
and Hikvision demonstrate the behavior of CPV transparent
proxies, as shown in Table X.

E. Case Study: CPDoS Attacks on Transparent Proxy

CPDoS Detection Methodology. In our study, we designate
a server as the target server to receive requests. When the
target server receives CPDoS requests, it returns default error
messages. For normal requests, the server returns designed
static content. During our experiments, we sent a pair of
requests - one for a CPDoS attack and the other for a normal
request - and compared the two responses for each pair. We
labeled a CPDoS attack as successful if the first response
matched the second response and both responses matched the
default error message. To determine whether these successful
attacks were caused by transparent proxies, we compared the
IP address of the vantage point with the IP address in the
Apache log of the target server. If these IP addresses were
different, we concluded that a transparent proxy caused the
successful attack.

Results. In this study, we identified two types of CPDoS
attacks on transparent proxies: HMC and HHO. Our analysis
revealed 434 HMC cases and 32 HHO cases in the transparent
proxy study. Our findings suggest that transparent proxies are
susceptible to CPDoS vulnerabilities, and therefore, transpar-
ent proxy owners should take immediate measures to mitigate
such vulnerabilities.

TABLE X
SERVICE AND PRODUCTS OF CPV TRANSPARENT PROXY SERVERS

Service # IP Product # IP
http 723 MikroTik bandwidth-test server 289

domain 294 MikroTik router config httpd 148
bandwidth-test 289 MikroTik 135

unknown 232 Hikvision IPCam control port 123
tcpwrapped 195 Huawei Home Gateway telnetd 104

rtsp 191 Apache httpd 101
telnet 184 Apple AirTunes rtspd 93
pptp 167 Hikvision Network Video Recorder 84
ssh 128 Dropbear sshd 73

ipcam 123 nginx 55

F. Summary of Findings

Our measurement findings in the global analysis are sum-
marized as follows. (1) A large number of transparent proxies
are performing potentially harmful HTTP interception. More
seriously, thousands of transparent proxies are vulnerable to
cache-poisoning attacks. (2) HTTP interception is distributed
globally, and we find FDR transparent proxies in 1,458 ASes
and 98 countries. (3) CPV transparent proxies are found to
exist in 51 countries and 226 ASes. (4) CPV transparent
proxies may cause serious damage. Damage might be signif-
icant if attackers target popular websites and the vulnerable
transparent proxies serve many clients. (5) Transparent proxies
are also vulnerable to other attacks, such as CPDoS (Cache
Poisoned Denial of Service). We identified 434 HMC and 32
HHO cases in our study.

VI. DISCUSSION

A. Security Implications

A transparent proxy is difficult to be detected on the client
side, and thus Internet users might not realize their traffic
is intercepted. First, when HTTP requests from clients are
handled by transparent proxies, it is possible to monetize
illegally from the traffic [33]. Second, due to the limited
visibility of such proxies, requested websites could be wrongly
blamed when undesired results (e.g., advertisement sites or
even malware) are returned. Third, CPV brings severe cache
poisoning vulnerability. Attackers might utilize such a vul-
nerability to inject designed content into transparent proxies.
Other clients who share the same transparent proxies may
also not get the original content. Moreover, if attackers inject
content similar to an online bank or other financial websites,
it may cause significant financial damage to clients. Finally,
intercepted HTTP requests could be snooped by untrusted
third parties, leading to the leak of private data. Therefore,
we believe that transparent proxies potentially induce ethical,
privacy, and security risks to Internet users.

B. Mitigation

According to RFC 2616 [34], transparent proxies should
not modify requests or responses beyond what is required for
proxy authentication and identification. However, our study
reveals that a significant number of transparent proxies deviate
from this standard. These proxies perform DNS resolutions to

obtain the destination IP address but ignore the destination IP
address in the request, leading to privacy and security risks
similar to the case of DNS resolution interception presented
in [35]. Transparent proxy administrators should exercise great
caution when configuring the proxy server to avoid unin-
tended consequences. Moreover, we have identified that many
transparent proxies operate on outdated operating systems and
software, exposing them to vulnerabilities and exploits such as
Common Vulnerabilities and Exposures (CVE). This makes it
easier for attackers to exploit the proxy server. Transparent
proxy owners should prioritize keeping the operating systems
and software up-to-date to mitigate such attacks.

Also, in our study, we identify that transparent proxies could
stealthily intercept HTTP traffic as the HTTP packets are
sent unencrypted, making them susceptible to snooping and
manipulation. By employing HTTPS [36], websites can enable
bidirectional encryption to prevent eavesdropping and protect
the exchanged data, reducing the risks of potential intercep-
tions. However, it is worth noting that, despite the availability
of modern browsers offering HTTPS-Only mode for secure
browsing (e.g., [37], [38]), HTTP is still largely allowed on
HTTPS-enabled websites [39], and outdated browsers remain
prevalent [40]. Additionally, modern web services heavily rely
on third-party libraries and services, resulting in HTTPS web-
pages issuing additional HTTP requests to acquire resources.
Therefore, we believe that the issues associated with HTTP
are still of critical importance and warrant attention.

C. Limitations

Limited Visibility. As the proxies we studied operate in a
transparent manner, in many cases (e.g., FDR proxies), we are
unable to directly identify the proxies. Instead, we passively
detect their presence by observing their impacts of operations
on clients (i.e., vantage points). Thus, in such cases, we can
only present the number of impacted vantage points rather than
the actual number of proxy servers, as some vantage points
may be impacted by the same upstream proxy server.

Geolocation Bias. Our experiments aim to produce compre-
hensive coverage at a global scale by strategically acquiring
vantage points. However, the results are still highly impacted
by the geo-distribution of vantage points that are available on
the used platform.

VII. RELATED WORK

Xu et al. [2] conducted an analysis of transparent proxy
behavior and their interaction with HTTP traffic in four major
US cell carriers. They observed that all four carriers employed
transparent proxies to interpose on HTTP traffic, but noted
variations in their behaviors. In our study, we specifically
focus on residential transparent proxies. Zhang et al. [3]
investigated the manipulation of HTTP traffic by transparent
proxies. Our work extends this research by performing a global
measurement study on transparent proxies, providing a broader
perspective on their prevalence and behavior.

Fanou et al. [29] explored the web infrastructure in Africa
and conducted a mapping of middleboxes in the region. Mi

et al. [25] conducted a study on residential proxy (RESIP)
ecosystems, focusing on the measurement and testing of 6
million RESIP IPs. Their research identified potential security
issues, such as the presence of potentially unwanted programs.
Similarly, Yang et al. [26] conducted an extensive study on
the Chinese RESIP ecosystem, providing a larger dataset and
additional insights based on their findings. It is worth noting
that our work primarily focuses on transparent proxies, which
distinguishes it from the topics covered in these prior papers.

Nguyen et al. [24] introduced and analyzed a new class
of web cache poisoning attacks known as Cache Poisoned
DoS (CPDoS) attacks. In our work, we explore the vulner-
ability of transparent proxies to CPDoS attacks. Mirheidari
et al. [41] conducted a large-scale study on web cache de-
ception (WCD), where attackers trick caching proxies into
erroneously storing private information transmitted over the
Internet, subsequently gaining unauthorized access to the
cached data. Additionally, Mirheidari et al. [42] proposed a
novel WCD detection methodology applicable to any website,
expanding our understanding of WCD attacks, their spread,
and their implications. Tyson et al. [43] investigated HTTP
header manipulation by proxies and middleboxes, analyzing
the factors influencing header manipulation. Chung et al. [44]
detected end-to-end violations of DNS, HTTP, and HTTPS
through a paid residential proxy service, revealing that up to
4.8% of nodes were subject to such violations.

Nguyen et al. [45] developed a cache testing environment
for analyzing shared caches and evaluated seven different
shared caching systems. However, our work focuses on iden-
tifying real-world cache security issues and analyzing their
actual impact on the modern global Internet.

VIII. CONCLUSION

In this paper, we perform a large-scale study on HTTP
interceptions by transparent proxies, which induce security,
privacy, and performance issues. We develop a set of tech-
niques to detect the stealthy behaviors of transparent proxies
by utilizing a well-maintained proxy platform with numerous
vantage points. Based on our collected dataset, we observe that
HTTP interceptions by transparent proxies exist in 1,458 ASes
and 98 countries. In addition, the interception characteristics
are further analyzed. Our analysis results indicate that stealthy
HTTP interceptions by transparent proxies can potentially
introduce new threats in the web ecosystem. Furthermore, we
investigate the security problems around transparent proxies,
such as caching poisoning attacks and CPDoS. We uncover
cache-poisoning-prone transparent proxies in 226 ASes and
51 countries. For CPDoS, we identify 434 HMC and 32 HHO
cases in our study. Ultimately, we analyze the threats caused
by transparent proxies and discuss mitigation solutions.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments, which help to improve the quality of this paper.
This work is supported in part by NSF grant CNS-2317829.

REFERENCES

[1] R. Crandell, J. Clifford, and A. Kent, “A Secure and Transparent Firewall
Web Proxy,” in LISA, 2003.

[2] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating Transparent Web Proxies in Cellular Networks,” in
Passive and Active Network Measurement (PAM), 2015.

[3] M. Zhang, B. Liu, C. Lu, J. Zhang, S. Hao, and H. Duan, “Measuring
Privacy Threats in China-Wide Mobile Networks,” in 8th USENIX
Workshop on Free and Open Communications on the Internet (FOCI),
2018.

[4] X. Jia, D. Li, H. Du, and J. Cao, “On Optimal Replication of Data Object
at Hierarchical and Transparent Web Proxies,” IEEE Transactions on
Parallel and Distributed Systems, vol. 16, no. 8, 2005.

[5] T.-c. Chiueh, H. Sankaran, and A. Neogi, “Spout: a Transparent Proxy
for Safe Execution of Java Applets,” IEEE Journal on Selected Areas
in Communications, vol. 20, no. 7, 2002.

[6] A. Luotonen, Web Proxy Servers. Prentice-Hall, Inc., 1998.
[7] R. Bian, S. Hao, H. Wang, and C. Cotton, “Shining a Light on

Dark Places: A Comprehensive Analysis of Open Proxy Ecosystem,”
Computer Networks, vol. 208, 2022.

[8] R. Bian, “Using Stand-Off Observation and Measurement to Under-
stand Aspects of the Global Internet,” Ph.D. dissertation, University of
Delaware, 2022.

[9] W. Jin and D. Kim, “Development of Virtual Resource based IoT Proxy
for Bridging Heterogeneous Web Services in IoT Networks,” Sensors,
vol. 18, no. 6, 2018.

[10] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here Be Web
Proxies,” in Passive and Active Measurement (PAM), 2014.

[11] X. Mi, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais,
L. Sun, and Y. Liu, “Resident Evil: Understanding Residential IP Proxy
as a Dark Service,” in IEEE Symposium on Security and Privacy (S&P),
2019.

[12] J. Choi, M. Abuhamad, A. Abusnaina, A. Anwar, S. Alshamrani, J. Park,
D. Nyang, and D. Mohaisen, “Understanding the Proxy Ecosystem: A
Comparative Analysis of Residential and Open Proxies on the Internet,”
IEEE Access, vol. 8, 2020.

[13] A. Tosun, M. De Donno, N. Dragoni, and X. Fafoutis, “ResIP Host
Detection: Identification of Malicious Residential IP Proxy Flows,” in
2021 IEEE International Conference on Consumer Electronics (ICCE),
2021.

[14] R. Bian, S. Hao, H. Wang, A. Dhamdere, A. Dainotti, and C. Cotton,
“Towards Passive Analysis of Anycast in Global Routing: Unintended
Impact of Remote Peering,” ACM SIGCOMM Computer Communication
Review, vol. 49, no. 3, 2019.

[15] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger,
“Infranet: Circumventing Web Censorship and Surveillance,” in Pro-
ceedings of the 11th USENIX Security Symposium, 2002.

[16] L. Jin, S. Hao, H. Wang, and C. Cotton, “Understanding the Practices
of Global Censorship through Accurate, End-to-End Measurements,”
Proceedings of the ACM on Measurement and Analysis of Computing
Systems (SIGMETRICS), 2022.

[17] A. Chaabane, T. Chen, M. Cunche, E. De Cristofaro, A. Friedman, and
M. A. Kaafar, “Censorship in the Wild: Analyzing Internet Filtering
in Syria,” in Proceedings of the 2014 ACM Conference on Internet
Measurement Conference (IMC), 2014.

[18] T. K. Yadav, A. Sinha, D. Gosain, P. K. Sharma, and S. Chakravarty,
“Where the Light Gets in: Analyzing Web Censorship Mechanisms in
India,” in Proceedings of the ACM Internet Measurement Conference
(IMC), 2018.

[19] S. Chen, H. Wang, X. Zhang, B. Shen, and S. Wee, “Segment-based
Proxy Caching for Internet Streaming Media Delivery,” IEEE MultiMe-
dia, vol. 12, no. 3, 2005.

[20] M. Xie, I. Widjaja, and H. Wang, “Enhancing Cache Robustness for
Content-centric Networking,” in Proceedings of IEEE INFOCOM, 2012.

[21] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich,
“Web Proxy Caching: The Devil is in the Details,” ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 3, 1998.

[22] I. Cooper and J. Dilley, “Known HTTP Proxy/Caching Problems,” Tech.
Rep., 2001.

[23] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evalu-
ating Content Management Techniques for Web Proxy Caches,” ACM
SIGMETRICS Performance Evaluation Review, vol. 27, no. 4, 2000.

[24] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your Cache Has Fallen:
Cache-poisoned Denial-of-Service Attack,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019.

[25] X. Mi, Y. Liu, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li,
S. Alrwais, and L. Sun, “Resident Evil: Understanding Residential IP
Proxy as a Dark Service,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2019.

[26] M. Yang, Y. Yu, X. Mi, S. Tang, S. Guo, Y. Li, X. Zheng, and H. Duan,
“An Extensive Study of Residential Proxies in China,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022.

[27] ProxyRack, https://www.proxyrack.com/, 2022.
[28] Amazon, “Alexa top domain list,” https://www.alexa.com/.
[29] R. Fanou, G. Tyson, E. L. Fernandes, P. Francois, F. Valera, and

A. Sathiaseelan, “Exploring and Analysing the African Web Ecosystem,”
ACM Transactions on the Web (TWEB), vol. 12, no. 4, 2018.

[30] R. Baumgart and Y.-Y. Chan, “On Privacy Issues of Internet Access
Services via Proxy Servers,” in Proceedings of International Exhibition
and Congress on Secure Networking, 1999.

[31] “IP-API,” https://ip-api.com/.
[32] Nmap, “Nmap: the Network Mapper - Free Security Scanner,” https:

//nmap.org/.
[33] N. Weaver, C. Kreibich, and V. Paxson, “Redirecting DNS for Ads and

Profit,” in USENIX Workshop on Free and Open Communications on
the Internet (FOCI), 2011.

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “RFC2616: Hypertext Transfer Protocol–HTTP/1.1,”
1999.

[35] B. Liu, C. Lu, H. Duan, Y. Liu, Z. Li, S. Hao, and M. Yang, “Who Is
Answering My Queries: Understanding and Characterizing Interception
of the DNS Resolution Path,” in Proceedings of the 27th USENIX
Security Symposium, 2018.

[36] E. Rescorla, “RFC2818: HTTP Over TLS,” 2000.
[37] C. Blog, “A Safer Default for Navigation: HTTPS,” https://blog.chrom

ium.org/2021/03/a-safer-default-for-navigation-https.html.
[38] C. Kerschbaumer, J. Gaibler, A. Edelstein, and T. van der Merwe,

“HTTPS-Only: Upgrading All Connections to HTTPS in Web
Browsers,” in Proceedings of the Workshop on Measurements, Attacks,
and Defenses for the Web, 2021.

[39] K. Shen, J. Lu, Y. Yang, J. Chen, M. Zhang, H. Duan, J. Zhang,
and X. Zheng, “HDiff: A Semi-automatic Framework for Discovering
Semantic Gap Attack in HTTP Implementations,” in Proceedings of
the 52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2022.

[40] M. Musch, R. Kirchner, M. Boll, and M. Johns, “Server-Side Browsers:
Exploring the Web’s Hidden Attack Surface,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security
(AsiaCCS), 2022.

[41] S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo, E. Kirda, and
W. Robertson, “Cached and Confused: Web Cache Deception in the
Wild,” in Proceedings of the 29th USENIX Security Symposium, 2020.

[42] S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and B. Crispo,
“Web Cache Deception Escalates,” in Proceedings of the 31st USENIX
Security Symposium, 2022.

[43] G. Tyson, S. Huang, F. Cuadrado, I. Castro, V. C. Perta, A. Sathiaseelan,
and S. Uhlig, “Exploring Http Header Manipulation In-the-Wild,” in
Proceedings of the 26th International Conference on World Wide Web
(WWW), 2017.

[44] T. Chung, D. Choffnes, and A. Mislove, “Tunneling for Transparency:
A Large-scale Analysis of End-to-End Violations in the Internet,” in
Proceedings of the 2016 ACM Internet Measurement Conference (IMC),
2016.

[45] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Mind the Cache: Large-
scale Explorative Study of Web Caching,” in Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, 2019.

