
CHAMELEOSCAN: Demystifying and Detecting iOS
Chameleon Apps via LLM-Powered UI Exploration

Hongyu Lin1(*), Yicheng Hu1(*), Haitao Xu1(Q), Yanchen Lu1, Mengxia Ren1, Shuai Hao2, Chuan Yue3

Zhao Li4, Fan Zhang1 and Yixin Jiang5

1Zhejiang University, 2Old Dominion University, 3Colorado School of Mines
4Hangzhou Yugu Technology, 5Electric Power Research Institute, CSG

{22321068,12521215,haitaoxu,v0n,fanzhang}@zju.edu.cn, shao@odu.edu, chuanyue@mines.edu
mengxiaren@hotmail.com, lzjoey@gmail.com, jiangyx@csg.cn

Abstract—Chameleon apps evade iOS App Store review by
presenting legitimate functionality during submission while
transforming into illicit variants post-installation. While prevalent,
their underlying transformation methods and developer-user
collusion dynamics remain poorly understood. Existing detection
approaches, constrained by static analysis or metadata depen-
dencies, prove ineffective against hybrid implementations, novel
variants, or metadata-scarce instances. To address these limita-
tions, we establish a curated dataset of 500 iOS Chameleon apps
collected through covert distribution channels, enabling systematic
identification of 10 categories of distinct transformation patterns
(including 4 previously undocumented variants). Building upon
these findings, we present CHAMELEOSCAN, the first LLM-driven
automated UI exploration framework for reliable Chameleon app
verification. The system maintains local decision interpretability
while ensuring global detection consistency through its core
innovation - predictive metadata analytics, semantic interface
comprehension, and human-comparable interaction strategies.
Comprehensive evaluation on 1,644 iOS apps demonstrates
operational efficacy (9.85% detection rate, 92.59% precision),
with findings formally acknowledged by Apple. Implementation
and datasets are available at https://github.com/ChameleoScan.

I. INTRODUCTION

With the increasing popularity of mobile apps, malicious
actors have increasingly leveraged these platforms to promote
and enable illicit services. To achieve wider and more conve-
nient dissemination, they have begun distributing such apps
through official channels like the iOS App Store, exploiting its
credibility and extensive user base. Despite Apple’s rigorous
review process, it is not entirely infallible, and illicit apps can
still proliferate on the platform [1], [2]. In one year alone,
35,245 fraudulent apps were removed from the App Store [3].

A recent tactic adopted by illicit apps to evade App Store
review involves masquerading as legitimate apps during the
vetting process and later transforming into their true form (e.g.,

*These two authors contributed equally as co-first authors.
QCorresponding author: Haitao Xu (haitaoxu@zju.edu.cn).

gambling or pirated apps) after approval, triggered by specific
actions. This process typically depends on collusion between
developers and users. Developers submit disguised apps to the
App Store while sharing transformation methods (e.g., entering
a predefined string in a feedback form) through unofficial
channels. Users obtain these methods, download the disguised
apps from the App Store, and activate the transformation.

We refer to such apps, whose transformation depends on
cooperation between developers and users, as collusion-based
Chameleon apps, though we still use the term Chameleon apps
for consistency and convenience. This definition is aligned with
that in [4], but our study specifically highlights the collusion
aspect, which has not been fully explored in prior studies.
Beyond this collusion, other key aspects of Chameleon apps,
such as their transformation mechanisms and the dissemination
channels, remain largely unexamined and poorly understood.
Gaining a deeper insight into these mechanisms is crucial for
developing effective defensive approaches.

Existing approaches for detecting Chameleon apps exhibit
notable shortcomings. Lee et al. [5] pioneered research in this
domain by developing Chameleon-Hunter, a static analysis
tool that detects concealed interfaces by examining semantic
discrepancies in user interfaces (UIs) extracted from native code.
This approach proves ineffective against hybrid Chameleon
apps that incorporate dynamically rendered UI components – a
predominant category according to Zhao et al. [6]. In response,
they introduced Mask-Catcher, which employs a multi-stage
detection process: identifying suspicious candidates through
inconsistencies between app descriptions and user reviews,
analyzing app recommendation relationships, and verifying
through binary similarity analysis. However, their research
acknowledges that sparse metadata availability and fundamental
constraints of binary comparison largely reduce Mask-Catcher’s
capacity for timely detection of new Chameleon variants.

To bridge these gaps, we systematically investigate
Chameleon apps with focused examination of their distribution
channels and transformation methods. Our comprehensive
analysis of 500 iOS Chameleon apps establishes a verified
ground-truth dataset, carefully constructed by monitoring
developer dissemination channels and cataloging transformation
techniques. This study reveals three fundamental character-
istics of Chameleon apps: (1) their transformation methods

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241906
www.ndss-symposium.org

https://github.com/ChameleoScan

can be consistently identified through metadata examination
(encompassing user reviews, BundleIDs, and descriptions) or
runtime signals such as pop-up notifications and image ads; (2)
these transformation mechanisms typically follow predictable,
uncomplicated patterns; and (3) successful transformation
invariably produces observable transitions to illicit functionality,
with distinctive interface alterations providing definitive visual
confirmation of the transformed state.

Building on these observations, we propose
CHAMELEOSCAN, an LLM-powered automated UI exploration
system specifically designed to address the limitations of
existing LLM-based UI testing approaches [7], [8] when
applied to real-world iOS Chameleon apps. The system
tackles two primary challenges: (1) accurate recognition
and interpretation of UI elements, and (2) fine-grained UI
navigation capable of handling dynamic disruptions (e.g., ads,
pop-ups) and ambiguous transformation methods.

To address these issues, CHAMELEOSCAN employs LLMs
with few-shot prompting to infer transformation methods
from both app-specific metadata and known transformation
intelligence used as exemplars. It then integrates visual and
structural UI data, screenshots and view hierarchies, to construct
enriched UI representations, enabling precise LLM-driven anal-
ysis that discerns both semantically relevant UI elements and
disruptive components. Additionally, CHAMELEOSCAN uses
LLMs to devise human-like exploration strategies and generate
executable action sequences to complete the transformation
process, while simultaneously detecting functional deviations
to confirm the manifestation of Chameleon behavior.

Detection Performance on Ground-Truth Dataset. To assess
CHAMELEOSCAN’s detection efficacy, we established a ground-
truth dataset containing 131 functional Chameleon apps and
233 benign apps. The system achieved flawless precision
(100%) with 71.76% recall (96.91% for apps containing
transformation-related user reviews), demonstrating detection
accuracy comparable to professional security audits.

Core Capability Assessment. The system’s capabilities
were rigorously evaluated across three key dimensions: trans-
formation method inference, UI element recognition, and
interference handling. In transformation inference, the top-
ranked prediction matched actual implementations in 31.62%
of cases, approaching the 38.70% accuracy of manual review-
based annotation. In identifying interactive UI elements, the
system achieved a precision of 89.36% and a recall of 70.39%.
For managing interference elements (e.g., ads, pop-ups), it
successfully handled intrusive ads in 85.96% of cases (e.g., by
automated dismissal) and responded appropriately to pop-ups
(e.g., by auto-granting permissions) in 95.56% of cases.

Real-World Deployment Analysis. When applied to 1,644 un-
labeled apps from the App Store, CHAMELEOSCAN identified
9.85% (162) as Chameleon variants, with manual verification
confirming 92.59% precision. Analysis of the 35 false negatives
revealed two primary causes: app unresponsiveness due to
lack of maintenance, and failures in inferring transformation
methods or identifying semantically meaningful clickable

Transformation Method:
Input “666” into feedback,
submit, and restart the app

An app offers
vaccination schedule

Launch
the app

(a)
Click Feedback Icon

(b)
Input ‘666’ & Submit

Transform

(c)
 Close Advertisement

An app offers
pirated movies

(d)
Finish Transformation

Fig. 1: A typical transformation process of Chameleon apps.

elements. The system demonstrated efficient processing times,
averaging 2.43 seconds for transformation inference, 8.16
seconds for UI recognition, 6.66 seconds for action execution,
and 5.31 seconds for transformation validation per app.

Comparative Analysis. Benchmarking against Chameleon-
Hunter [5] and Mask-Catcher [6] using annotated datasets
revealed CHAMELEOSCAN’s superior performance. Among
223 analyzed Chameleon apps, 46.64% (104) utilized hybrid
frameworks (e.g., Flutter or WebView), fundamentally lim-
iting Chameleon-Hunter’s detection capacity. While Mask-
Catcher failed to detect any review-free Chameleon apps,
CHAMELEOSCAN identified 96.88% of such cases. Even
when reviews were available, Mask-Catcher’s effectiveness
was compromised by linguistic discrepancies (e.g., English
descriptions with Chinese reviews), insufficient suspicious
content, or deliberate user review manipulation.

Contributions. Our contributions are summarized as follows:
• We constructed a large dataset of iOS Chameleon apps,

conducted the first systematic analysis of their transformation
methods, and established a more comprehensive taxonomy
of 10 transformation method categories, 4 of which represent
novel discoveries not previously documented.

• We developed CHAMELEOSCAN, the first LLM-powered au-
tomated UI exploration system for detecting iOS Chameleon
apps through synergistic integration of App Store metadata
and runtime UI evidence. Employing a dynamic, multimodal,
few-shot learning approach, CHAMELEOSCAN addresses
two critical limitations of existing UI testing automation
methods: it achieves near-human capability in (1) accurately
identifying relevant UI elements while managing distracting
pop-ups, and (2) conducting fine-grained exploration under
ambiguous task specifications where existing deterministic
automation fails.

• CHAMELEOSCAN demonstrates robust detection effective-
ness through rigorous evaluation on both a verified bench-
mark dataset and newly released App Store apps. The system
significantly outperforms existing state-of-the-art methods,
particularly in challenging scenarios involving apps that
employ hybrid frameworks or reveal transformation logic
solely during runtime without leaving metadata traces.

II. BACKGROUND AND RELATED WORK

We present the background of Chameleon apps and examine
prior work in illicit app analysis and mobile task automation.

2

A. Chameleon Apps

An Example of Chameleon App. Fig. 1 illustrates a typical
transformation process of Chameleon apps. A user downloads
an iOS app named Vaccination Schedule, purported to
provide vaccination scheduling services for pediatric care. After
acquiring the transformation instruction, “Enter ‘666’ in

feedback field, submit, and restart the app,” the
user executes the specified procedure within the app, ultimately
transforming it into a pirated movie streaming service.

Lifecycle of Chameleon Apps. The typical lifecycle of
Chameleon apps encompasses development, distribution, and
transformation phases. Developers initially create and submit
these apps to the App Store. They then publicly disclose app
information, including download links and transformation meth-
ods, through various promotion channels. Users accessing these
channels obtain both the download links and transformation
instructions. After downloading the app from the iOS App
Store, users subsequently apply the acquired transformation
methods to reveal the app’s true functionality.

B. Illicit iOS App Analysis
While numerous studies have been conducted on illicit app

analysis for Android [9]–[15], there has been limited research
focused on iOS apps. PiOS [16] was introduced to detect
privacy leaks in iOS apps by analyzing data flows within
Mach-O binaries. Lee et al. [4] investigated crowdturfing
apps, a novel category of malicious apps, and leveraged a
view controller graph to detect hidden screens within such
apps. Then, Lee et al. [5] introduced Chameleon-Hunter, a
tool that uses static analysis to examine binary files and UI
layouts of apps to identify hidden UIs in Chameleon apps.
However, static analysis-based detection methods may suffer
from reduced detection accuracy when applied to hybrid apps,
which incorporate dynamically rendered UI elements.

Existing research has demonstrated the utility of iOS app
metadata, especially user reviews, for privacy and security
analysis [17]–[24]. While Mask-Catcher [6] employs metadata
including user reviews and App Store recommendations to
detect hybrid-mode Chameleon apps, its effectiveness is
constrained by several factors. The approach depends on both
the availability of user-generated content and the authenticity of
“You might also like” recommendations, rendering it ineffective
for newly released apps lacking sufficient user feedback.
Furthermore, its reliance on known code patterns through
similarity analysis prevents identification of novel variants.

Our study centers on the understudied domain of Chameleon
app transformation methods, with particular emphasis on
their user-collaborative nature. Drawing upon these identified
transformation patterns, we introduce an innovative detection
system that employs LLM-enhanced mobile automation testing
to reliably identify Chameleon apps.

C. Mobile Task Automation
Mobile task automation, aiming to automate multi-step

processes within mobile apps, represents a rapidly evolving
field. The automation workflow typically comprises 3 key steps:

Welcome To
My Anniversary Memories

Go To Memories

Displayed UI

Share App

Rate App

View Hierarchy

</-- omitted-->

<XCUIElementTypeOther ...>

<XCUIElementTypeStaticText

type="XCUIElementTypeStaticText"

value="Welcome To My Anniversary Memories"

enabled="true" visible="true" accessible="true"

x="10" y="30" width="355" height="58" index="0"/>

</-- omitted-->

<XCUIElementTypeButton ...>

<XCUIElementTypeStaticText

type="XCUIElementTypeStaticText"

value="Go To Memories" name="Go To Memories" label="Go To Memories"

enabled="true" visible="true" accessible="false"

x="103" y="226" width="169" height="24" index="0"/>

</XCUIElementTypeButton>

Fig. 2: UI screenshot and view hierarchy (partial) of an app.

UI Representation. UI representation serves as the foundation
for task planning. The two most commonly used representations
are screenshots [25], [26] and view hierarchies [7], [8], [27],
[28]. Screenshots provide visual cues for interpreting UI
elements, while view hierarchies offer a structured, tree-like
textual representation of UI components and their attributes.
An illustrative example showing both a UI screenshot and
its corresponding view hierarchy is provided in Fig. 2. Each
element typically includes attributes, such as type, position,
size, visibility, and interactivity, offering richer context for the
decision-making module.

Task Planning. LLMs have been prominently leveraged for
task planning tasks. Following Wang et al.’s pioneering work
[29] on conversational UI interactions, numerous systems have
adopted LLMs as their central decision-making component [7],
[8], [30]–[32]. Researchers have developed advanced prompts
to enhance task planning. Notable implementations include
AutoDroid [7], which integrates action history into prompts
to prevent cyclic behavior, and Guardian [8], which employs
action spaces to eliminate redundant or invalid operations.

Agent Execution. Once the operations are selected, agents
interact with the mobile interface and execute these actions
to complete the task. Despite the demonstrated potential
of task automation tools in task planning and semantic
understanding, they face two notable limitations. First, the
majority of research and datasets are exclusively focused on the
Android platform [33], [34], creating a gap in solutions tailored
for iOS. Second, existing task automation tools frequently
demonstrate diminished robustness when handling complex
apps, particularly Chameleon apps characterized by intrusive
ads, dynamic interface changes, and overlapping content layers.

III. PRELIMINARY STUDY

A. Data Collection of Chameleon Apps

The collection of iOS Chameleon apps poses significant chal-
lenges. First, identifying such apps based on their descriptions
on the App Store or through existing malicious app detection
approaches is impractical due to their seemingly legitimate
appearance and non-traditional malicious nature. Moreover,
the promotion channels for disseminating their transformation
methods are often highly covert. To this end, we utilized
specialized terminology (e.g., “disguised app” or “covert
app”) to search for promotion channels on popular platforms,
including Telegram [35], WeChat [36], and AppRaven [37],

3

TABLE I: Dataset statistics for Chameleon apps
Source Channels (#) Apps Collected Apps w/ IPA
WeChat Accounts (4) 346 175
Appraven Groups (2) 108 39
Illicit Websites (17) 46 20

Total (23) 500 234 (46.8%)

where developers frequently share relevant information in
irregular, fragmented communications.

We successfully identified 23 promotional channels con-
taining information related to Chameleon apps, including
17 websites discovered through Telegram, 4 official WeChat
accounts, and 2 AppRaven chat groups. Beginning in May 2024,
we conducted a six-month monitoring campaign, tracking daily
updates from these channels and collecting shared content
related to Chameleon apps, including App Store download
links, hidden functionalities, and transformation methods.

By tracing iOS App Store download links, we obtained
installation IPA files for these apps using ipatool-py [38], and
collected their metadata in collaboration with an anonymous
mobile intelligence provider. This metadata encompassed app
names, categories, descriptions, and user reviews. Table I sum-
marizes the collected Chameleon app statistics. Our final dataset
consists of 500 iOS Chameleon apps originating from 4 WeChat
accounts, 2 Appraven groups, and 17 illicit service websites.
We successfully downloaded and manually verified IPA files for
234 apps (46.8%) through expert installation testing, exceeding
the previous largest dataset of 180 Chameleon apps [6]. The
remaining apps were unavailable for download as they had
been removed from the App Store prior to our investigation.

B. Characterizing Chameleon Apps

Leveraging our unique dataset of Chameleon apps, we first
analyze their transformation methods, an aspect that has been
largely overlooked in existing research. We then examine their
functionalities before and after transformation.

1) Transformation Methods: Transformation methods of
Chameleon apps are typically shared by their developers to
guide potential users in transforming a seemingly normal
app into its true form. Through analysis of our collected
samples, we classified them into 10 distinct categories as
follows (summarized in Table II):

➊ Immediate transformation upon app launch. The trans-
formation occurs instantly upon the app’s initial launch,
requiring no further user actions.

➋ Delayed transformation after app launch. Transformation
takes place within a few seconds (e.g., 10) after the app is
launched for the first time, frequently accompanied by visual
indicators such as “Updating” displayed during the process.

➌ Transformation triggered by app restart. The transforma-
tion is achieved simply by restarting the app.

➍ Region-specific transformation. The transformation is
restricted to users located in a specific geographic region, and
it is automatically triggered, requiring no user interactions.

➎ Time-restricted transformation. The transformation can be
completed exclusively during predefined time windows, e.g.,
between 12 a.m. and 1 a.m., without any user interactions.

➏ Transformation by interacting with specific UI elements.
Transformation is initiated by tapping certain areas or UI
elements for a predefined number of times, e.g., 5 taps on
a blank area or 8 taps on a specific button. In some cases,
tapping must occur rapidly after app launch, as the tapping
area only appears along with the loading bar.

➐ Transformation after viewing in-app ads. Transformation
is triggered only after watching a certain number of ads (e.g.,
three) displayed within the app.

➑ Transformation by selecting a specific option. Transfor-
mation is initiated only after the user selects and submits a
particular option from a dropdown menu.

➒ Transformation by submitting a specific string code.
Transformation occurs when a predefined code (e.g., “520,”
“ys777,” or “Peppa Pig”) is entered into a designated text
input field, such as a user feedback box or a search box.

➓ Transformation using a magic string with clipboard per-
mission. Transformation involves a more complex process,
where a magic string is first copied from an external covert
distribution channel to the smartphone’s clipboard. Upon
launching the app and granting clipboard access, the app
reads the string to complete the transformation.

As shown in Table II, the two most prevalent formats of
transformation methods, “submitting a specific string code”
and “tapping a designated area,” account for 69.60% (348
cases) and 9.80% (49 cases), respectively. Additionally, 18
Chameleon apps employ hybrid transformation methods that
combine two or three types, with none utilizing more than
three. For instance, one app requires users to enter “999999”
into a calculator interface and press the calculate button
three times to trigger the transformation.

Based on the user actions required, these 10 distinct
transformation methods can be further grouped into four
types: (i) Auto-Transformation: no action or app restart only.
(ii) Spatiotemporal-based: out-of-app settings of location or
time. (iii) Click-based: in-app clicks, e.g., consecutive clicking
in a specific region. (iv) Input-based: submitting a specific
string into a designated field, such as text boxes or clipboard.
The specific user actions and associated elements for each
transformation type are also provided in Table II. Overall,
most transformations require users to perform one or more ac-
tions, including click, restart, select options, and
copy, on elements, such as button, text field, image,
static text, and clipboard. Furthermore, these actions
and elements typically follow predictable patterns, with 90%
of these transformations being completed in five or fewer steps.
These findings highlight that the transformation methods are
often straightforward and predictable.

Novelty of Our Identified Transformation Methods. Our
work establishes a more comprehensive taxonomy of trans-
formation methods, significantly extending and refining the
fragmented observations documented in prior studies [5], [6].
Of the 10 transformation methods we identified, four (➋➐➑➓)
represent novel discoveries, while four correspond to previously
reported transformation types (➊➌➍➒).

4

TABLE II: Classification of transformation methods employed by Chameleon apps. Parenthetical values denote app counts for
each method (with hybrid-method apps counted in all relevant categories). The Known/Novel column categorizes methods as
Novel (newly discovered), Partial (partially documented), or Reported (previously identified). Required Actions and Operated
Elements detail the necessary user interactions and corresponding interface components respectively.

Category (#) Description of Transformation Methods (#) Known/ Novel Required Actions Operated Elements

Auto-Transform.
(95, 19.0%)

➊ No additional actions are required, simply open the app to
complete the conversion. (28, 5.6%) Reported [6] N/A N/A

➋ Transformation takes place within a few seconds. The app
usually displays “Updating” during this time. (20, 4.0%) Novel N/A N/A

➌ The transformation is achieved simply by restarting the app,
without requiring any additional interaction. (47, 9.4%) Reported [6] Restart N/A

Spatiotemporal
Based
(7, 1.4%)

➍ Require the geographical location in a specific region (e.g.,
China) (4, 0.8%) Reported [5] Out-of-app loca-

tion sett. N/A

➎ Require the time to be within a specific range, such as between
12:00 AM and 1:00 AM. (3, 0.6%) Partial [5] Out-of-app time

settings N/A

Click-Based
(60, 12.0%)

➏ Tap a blank area or specific control on the page more than a
specified number of times. (49, 9.8%) Partial [6] Click, Rapid

Click, Restart
Static Text, Button, Im-
age (e.g., Backdrop)

➐ Watch a sufficient number of ads, such as completing the trigger
by watching three ads. (10, 2.0%) Novel Click Static Text, Button (e.g.,

“Close Ads”, “Confirm”)
➑ Perform a specific selection operation, such as selecting a
specific option in a dropdown menu and tap submission. (1, 0.2%) Novel Click, Option Se-

lect, Restart
Picker (e.g., dropdown
Menu), Button

Input-Based
(356, 71.2%)

➒ Enter a specific code in a designated text input field (commonly
feedback or search bar) and tap submission. (348, 69.6%) Reported [6] Text Input, Click,

Restart

Static Text, Button (e.g.,
“Feedback”, “Submit”,
“!”, “+”), Alert

➓ Copy specific text content to the clipboard, grant clipboard
access upon entering the app, then trigger automatically. (8, 1.6%) Novel Copy, Click Static Text, Clipboard

The remaining two methods (➎➏) demonstrate partial
correspondence with existing research but are substantially
enhanced through our empirical findings. The Spatiotemporal-
Based method (➎) introduces precise temporal parameters,
advancing beyond the vague temporal triggers noted in [5].
Similarly, our Click-Based method (➏) extends prior work
on location-specific clicking [6] by incorporating multi-click
sequences and temporal constraints.

Critically, existing detection methods [5], [6] frequently
prove inadequate even for known transformation types (i.e.,
➊➌➍➒). This limitation is particularly pronounced when
apps employ hybrid frameworks or reveal transformation logic
exclusively during runtime without leaving discernible metadata
traces. The fundamental dependence of these conventional
approaches on static analysis and metadata inherently restricts
their effectiveness, underscoring the essential requirement for
our dynamic, multimodal methodology as a substantive advance
beyond incremental, rule-based enhancements.

2) Disclosure of Transformation Methods: As established
by Zhao et al. [6], user reviews often contain valuable insights
into app functionality, including subtle clues about their
transformation methods. Our examination of 14,692 reviews
across 500 Chameleon apps (84.80% of which contained at
least one review) demonstrates that both developers and users
systematically embed transformation instructions within these
reviews. Notably, 48.8% (244) of analyzed apps contained
review-disclosed transformation methods, ranging from implicit
cues (e.g., “useful: 520”) to explicit procedural guidance
(observed in 79 cases), e.g., “Click the exclamation mark ‘!’
in the upper-right corner, enter ‘777ys,’ then submit.” These
findings substantiate user reviews as a credible source for

deriving Chameleon app transformation techniques.
Beyond user reviews, we investigated whether app metadata,

such as BundleID and description, could also reveal transfor-
mation methods. Clustering apps by app description revealed
patterns: 8 apps disguised as games employed either Auto-
Transformation or simple Click-Based methods, while 13 of 23
apps posing as scientific calculators required inputting specific
numeric strings (e.g., “666”) into “feedback” sections. Similarly,
clustering by BundleID showed that all 8 apps containing
“dz.spd” or “hy.buto” domain strings shared the same keyword-
based transformation method (submitting “persimmon”). These
findings suggest that apps with similar metadata tend to use
identical transformation methods, possibly due to developer
template reuse. Thus, metadata may serve as a predictive
indicator, especially when user reviews are scarce.

Additionally, some Chameleon apps disclose transformation
methods through run-time information, such as pop-up alerts
or image ads. We identified 11 such cases, including one
app (BundleID “com.shuidain.baocun”) that displayed an alert
stating, “Kind reminder: Watch an ad or provide feedback to
unlock!”. This further underscores the diverse channels through
which transformation methods may be revealed.

3) Functionalities Before and After Transformation: For
the 234 Chameleon apps with accessible IPA files, we system-
atically compared their declared App Store functionalities with
actual behaviors uncovered through empirical device testing.
Our verification process involved two experts independently
examining each app’s metadata (particularly app description)
followed by execution of documented transformation proce-
dures. This rigorous examination revealed substantial disparities
between advertised and actual functionality. Initial UI interfaces
faithfully reflected their official descriptions, occasionally

5

containing peripheral elements (e.g., advertisements, settings
panels, feedback interfaces) unrelated to core functionality.
Following successful transformation, these apps invariably
transitioned to illicit operational states (e.g., financial scams,
pirated media services, and adult content), with definitive visual
confirmation apparent in their modified user interfaces.

Our statistical analysis reveals that these apps primarily
masquerade as puzzle games, habit trackers, or productivity
tools within the App Store, predominantly classified under Util-
ities (62.39%), Lifestyle (18.38%), or Entertainment (5.98%).
Following transformation, they consistently transition to deliver-
ing illicit services including media piracy, gambling platforms,
adult content, and copyright-infringing literary access.

4) Summary: Our investigation yields three key insights
about Chameleon apps: (1) their transformation methods can
be reliably identified through metadata analysis (including user
reviews, BundleIDs, and descriptions) or runtime indicators
like pop-up notifications and image ads; (2) these methods are
often straightforward and predictable; and (3) successful trans-
formation consistently leads to clearly detectable transitions to
illicit operational modes, with distinctive UI alterations serving
as unambiguous visual indicators of the transformed state.

IV. CHAMELEOSCAN APPROACH

In this section, we present the threat model underlying our
study, then examine the requirements and challenges of auto-
mated UI testing, and finally elaborate on CHAMELEOSCAN’s
design and implementation.

A. Threat Model

The adversary aims to bypass iOS App Store review proto-
cols by masquerading as a legitimate app during submission.
Following the app’s release, the adversary may embed subtle
clues about its transformation mechanisms within app metadata
or runtime pop-up alerts.

This model assumes successful adversary deployment on
the App Store, with defenders employing automated detection
systems to mitigate Chameleon app proliferation post-release.

B. Requirements and Challenges of Automated UI Testing of
Chameleon Apps

To identify the core functionalities of a suspicious app,
automated feature-based UI testing [39], [40], which aims
to validate an app’s primary functions with minimal manual
intervention, is essential and desirable. For a suspicious
Chameleon app, drawing on prior knowledge, defenders need
to automatically generate multi-step UI tests that emulate
typical user interactions to trigger the transformation process.
These tests generally involve executing the app in a controlled
environment, applying various potential transformation meth-
ods, observing its responses to specific triggers, and detecting
inconsistencies between its declared and actual functionalities.

This process of UI testing, which requires determining the
next action based on the responses to previous UI actions,
inherently constitutes a sequential planning problem [29]. De-
spite the promising potential of LLMs for sequential planning

(a) Unable to recognize
transparent input fields

solely by vision

(b) Unable to differentiate
underlying background
pages from foreground

overlay windows

(c) Unable to resist the
interference from deceptive

interactive elements in
pop-up ads

(d) Unable to detect
translucent close

buttons ('X') in ads

Transparent
input fields

Topmost
pop-up ad

Secondary
pop-up ad

Background page

Ad

Fake login alert
within the ad

Ad

Translucent
close button

('X')

Fig. 3: Demonstrated limitations in vision-based UI recognition.

problems, state-of-the-art LLM-based UI testing approaches
[7], [8] encounter the following challenges when applied to
our iOS Chameleon app dataset.

Difficulty with UI Element Recognition. Accurate UI
element recognition is essential for automated UI testing, yet
reliably identifying elements from screenshots alone remains
problematic. Key challenges include deceptive elements (e.g.,
intrusive pop-ups), low-contrast elements blending with back-
grounds, and ambiguous elements lacking clear boundaries (e.g.,
borderless text fields or minuscule ad close buttons)—issues
particularly prevalent in Chameleon apps with poor UI design.

Even leading vision-based automation systems demonstrate
significant limitations when handling such complex UI sce-
narios. Fig. 3 demonstrates several problematic interface
scenarios in Chameleon apps where VisionTasker [25], a
leading vision-based automation system, exhibits unreliable
performance. The tool systematically misinterprets transparent
input fields as static text components (a). When ad pop-ups
obscure the underlying content, it erroneously classifies partially
visible background elements as interactive due to insufficient
view hierarchy context (b). Additionally, it cannot reliably
differentiate deceptive interface elements (e.g., promotional
images mimicking login alerts) from authentic controls (c).
The system also consistently overlooks small, translucent close
buttons (‘X’) within ad content (d).

Issues with View Hierarchies. While view hierarchies (a.k.a.,
UI trees) complement screenshots by providing structural
metadata (e.g., bounding boxes, hidden attributes), they exhibit
essential limitations, as illustrated in Fig. 4 showing both the
screenshot and corresponding UI tree of “Tranquil Angler”,
a purported fishing app that transforms into a pirated video
streaming service at midnight.
• Noisy Elements: The hierarchy contains excessive nodes

(e.g., empty <Other>) that complicate processing by LLMs.
• Redundancy: Critical attributes appear redundantly across

nodes (e.g., TYPE OF FISH in both parent and child
elements), necessitating data consolidation.

• Semantic Deficiency: Critical interactive elements (func-
tional icons ②, START button ④, image ①) lack functional
annotations, impeding automated analysis.

• Structural Misalignment: The hierarchy’s node sequence

6

②

③

④

①

②

①
③

④

(2) Redundancy:
Duplicate instances of
interested values (e.g.,
“TYPE OF FISH”)

(1) Noisy Elements:
Excessive <Other>
nodes w/o meaningful
child nodes

(4) Structural Misalignment:
Discrepancy between UI tree
ordering (② ④ ③ ①) and visual
layout sequence(①②③④)

(3) Semantic Deficiency:
Missing semantic labels
for icon buttons (②), the
START button (in ④),
and the image (①)

UI

Screenshot

Initial View

Hierarchy (UI Tree)

<AppiumAUT>
└── <Application name="TranquilAngler">

├── <Window>
│ └── <Other>
│ ├── <Other>
│ ├── <Button name="btn_bg_0" />
│ ├── <Button name="btn_bg_1" />
│ ├── <Button name="btn_bg_2" />
│ ├── <Button name="btn_bg_3" />
│ ├── <Button name="btn_bg_4" />
│ ├── <Button name="TYPE OF FISH">
│ │ └──<StaticText value="TYPE OF FISH" />
│ ├── <Button name="SKIN">
│ │ └──<StaticText value="SKIN" />
│ ├── <Button name="TOUCH TEXT">
│ │ └──<StaticText value="TOUCH TEXT" />
│ ├── <Button>
│ ├── <Button name="DIFFICULTY LEVEL">
│ │ └──<StaticText value="DIFFICULTY LEVEL"/>
│ ├── <StaticText value="TranquilAngler" />
│ └── <Image />
│
└── <Window>

└── <Other>
└── <……>

Issues with View Hierarchy

Noisy elements

Fig. 4: Example UI screenshot and corresponding view
hierarchy, annotated with identified view hierarchy issues.

(②④③①) contradicts the visual layout (①-④).

Fine-Grained UI Navigation. Effective automated UI naviga-
tion that demands precise action control also poses challenges:
• Disruption of Distracting Elements: Chameleon apps often

include ads, which constitute external distracting content
rather than the app’s own functionality. A robust UI testing
framework must resist such disturbances by identifying
and handling these ad elements. Otherwise, testing may be
disrupted, either stalling due to unclosed ads or deviating to
unintended pages, ultimately leading to test failure. Similarly,
pop-up alerts (e.g., permission requests) from the app or the
iOS system may impede testing and necessitate additional
handling mechanisms. Conventional ad-blocking techniques
are frequently insufficient for addressing obfuscated ads or
custom pop-up interfaces.

• Identification of Repetitive vs. Required Actions: LLMs
often produce repetitive actions, which are typically mitigated
by maintaining an action history to track executed
operations. However, this approach performs poorly for
Chameleon apps, where the transformation process may
legitimately require identical actions on different pages
(e.g., a Next button). Consequently, LLMs may misclassify
essential actions as redundancies or overlook cross-page
repetitions. Therefore, distinguishing between truly repetitive
and contextually required actions is crucial.

• Ambiguous Task Specifications: Transformation methods,
which serve as tasks for UI automation, often suffer from
vagueness and incompleteness (e.g., a user review may
mention only a keyword “666” without indicating the specific
input location). This renders them unsuitable for direct
decomposition into executable subtasks. Hence, the LLM
must intelligently formulate exploration strategies to infer
page-specific actionable steps that collectively contribute to
achieving the overall objective.

C. CHAMELEOSCAN Design

We propose CHAMELEOSCAN, a LLM-powered automated
UI exploration system designed for efficient Chameleon app
detection. The system addresses the challenges outlined in
§IV-B by providing accurate UI element recognition and
comprehension, precise detection and handling of distracting
elements, and human-comparable granularity in UI exploration.

 Action Execution

dissimilar

 Decision Making &
Action Generation

 Transformation
Intellig. Synthesis

 Transformation
Method Inference

 UI Acquisition &
Enhancement

 UI Comprehension

 Transform. Validation

LLM-driven
Automated

Test Iteration

Known
Chameleon

Pattern

Metadata
(Description&
User Reviews)

Few-Shot Prompt

Transformation
Method Cand.

Sort inference result
by confidence score

Test on real device
for each transfor.
method candidate

(as a task)

Screenshot
+ View

Hierarchy

Guide LLM to focus on interact.
elements, ads, pop-ups, etc.

Interactive Elements &
Functional Descriptions

Current
candidate
method

Action Sequences

View
hierarchy
similarity

comp.

Execute
actions

YesChameleon
App Metadata Runtime UI

Evaluate discrepancies

vs
Restart
iteration

App
Under Test

Action
history

Acquire UI data

❶

❷

❸ ❹

❺

❻❼

UI Tree
Enhancement

Tree Pruning

Semantic
Supplementation

similar

No

Fig. 5: The workflow of CHAMELEOSCAN.

The operational workflow of CHAMELEOSCAN is depicted
in Fig. 5. When analyzing a suspicious app, the system
executes the following core components (or steps) to as-
certain its Chameleon classification. (➊) Transformation
Intelligence Synthesis. Leveraging known patterns from
established Chameleon apps, the framework systematically
extracts transformation-relevant indicators from app metadata
(including BundleID, descriptions, and user reviews), which are
then processed by LLMs to derive the app’s functionality profile
(i.e., the app’s intended core features, behaviors, and expected
user interactions) for subsequent analysis. (➋) Transformation
Method Inference. By integrating documented Chameleon
transformation exemplars with target app metadata into care-
fully crafted few-shot prompts, the system employs LLMs
to generate probabilistically ranked transformation methods
for empirical validation. Then, the system performs iterative
evaluation of all candidate transformation methods (steps ➌-
➐ constituting a single evaluation round) until conclusive
determination of the app’s Chameleon status is achieved. (➌) UI
Data Acquisition and Enhancement. An iOS instrumentation
agent executes the app binary, applies each transformation
method candidate (e.g., wait 5 seconds after launch), auto-
matically captures UI snapshots along with the corresponding
structural view hierarchy (subsequently enhanced) upon UI
state transitions. (➍) UI Comprehension. The system employs
LLM-based analysis to process both visual and structural UI
representations, enabling the identification, classification, and
semantic annotation of meaningful interface elements. (➎)
Decision Making and Action Sequence Generation. The
LLM formulates exploration strategies and generates executable
interaction sequences by synthesizing current UI understanding,
historical action context, and transformation objectives. (➏)
Action Execution. The mobile agent sequentially executes
generated actions, dynamically capturing new interface states
(screenshots and view hierarchies) for iterative analysis. (➐)
Transformation Validation. The system performs comparative
analysis of each newly rendered UI’s screenshots and structural

7

hierarchies against declared specifications, evaluating function-
ality discrepancies to both validate transformation occurrences
and conclusively determine Chameleon app classification.

We selected GPT-4o as the underlying LLM for the core
analytical components of CHAMELEOSCAN due to its advanced
multimodal reasoning capabilities and native support for
structured output generation (at the time of writing), both
essential for our Chain-of-Thought implementation. Note that
CHAMELEOSCAN itself is model-agnostic and can be adapted
to utilize other LLMs with comparable capabilities.

The subsequent section details the system’s operational
methodology, employing the Vaccination Schedule app
(Fig. 1) as a representative case study, with full procedural
details provided in Appendix A.

<instruction>
Given {app metadata} (including BundleID,
description, and user reviews), infer potential
transformation methods. Respond with a list of
methods, each accompanied by a confidence score
and a brief rationale. Provide no additional
output.

</instruction>
<output_format>

Return a list where each item is a JSON object
with the following fields: "method" (string), "
confidence" (float between 0-1), and "rationale"
(1-3 sentences). Adhere strictly to the
exemplar structure provided in <examples>.

</output_format>
<examples>

1. Input: [metadata_1]; Output: [transform.
method_1], [confidence_1], [reasoning_1]}
2. Input: [metadata_2]; Output: [transform.
method_2], [confidence_2], [reasoning_2]}
...
n. Input: [metadata_n]; Output: [transform.
method_n], [confidence_n], [reasoning_n]}

</examples>

Listing 1: Prompt template for transform. method inference.

➊ Transformation Intelligence Synthesis
The identification of transformation methods in potential

Chameleon apps is complicated by their concealed promotion
mechanisms. As evidenced in our preliminary study (§III-B2),
metadata analysis, encompassing app BundleID, descriptions,
and user reviews, proves effective for two key reasons. First,
such metadata frequently contains unintentional revelations
from either developers or users. Second, apps sharing similar
metadata characteristics tend to employ comparable transfor-
mation methods, likely stemming from common developer
practices or template replication. This correlation proves particu-
larly valuable when analyzing suspicious apps with limited user
reviews, as known Chameleon apps with analogous metadata
can provide critical insights into their potential transformation
techniques. Also, during the metadata analysis process, LLMs
generate the app’s functionality profile, establishing the baseline
for detecting semantic discrepancies between observed UIs and
expected core functionality.

To enable automated extraction of transformation methods
from preprocessed metadata, we employ a few-shot prompting
approach, utilizing both known transformation methods and

corresponding metadata as exemplars. Our structured prompt
template is illustrated in Listing 1.

➋ Transformation Method Inference
Providing the aforementioned prompts to an LLM generally

produces a limited set (typically n=2 or n=3) of tuples structured
as {transformation method, confidence score, reasoning}. As
shown in Table II, a transformation method may include pa-
rameters such as post-launch delay, time windows, geographic
constraints, click locations, click counts, input strings and their
designated input fields, though not all fields are always present.
The confidence score (higher when app metadata strongly
support the method) represents the estimated probability of
a potential method being correct, while reasoning provides
supporting evidence from metadata analysis.

The LLM-derived transformation methods are typically app-
specific, whereas some app-agnostic methods exist. Notably,
Auto-Transformation methods (§III-B1), representing roughly
20% of documented cases, activate automatically upon app
launch/restart. To optimize detection efficiency, we prioritize
these app-agnostic methods before proceeding the LLM-
suggested approaches in descending order of confidence scores.

Continuing with the Vaccination Schedule case, an
excerpt of its accessible metadata is provided as follows.

App Name: Vaccination Schedule
Category: Utilities
BundleID: com.qiu.okw.opg.yimiao
Description: Provides detailed vaccination schedules, reminders,
and records to help parents monitor and know their child’s
immunizations.
User Reviews (112 in total):
(1) The app is useful, but have too many ads.
(2) App update fails, cannot unlock!!!!!
(3) Enter “666” does not work? What is code?
(4) Contact Us, 666
(5) Feedback is exclamation mark, in the right corner!
(6) 666 666 this app is 666
... (106 additional reviews)

When processed by the LLM, this metadata yields three
probable transformation methods. The model appears to as-
sociate the frequently occurring term “666” with potential
input requirements, given its prevalence in both the metadata
and other established Chameleon patterns, while references to
“Feedback” and “Contact Us” suggest probable input locations.

Possible transformation methods with confidence scores and rationale.
(1) Click “Contact Us”, input “666” & submit feedback (0.9) - [reasoning]
(2) Restart the app and wait for update for three times (0.4) – [reasoning]
(3) Watch ads before clicking the “Close Ads” button (0.2) – [reasoning]

Furthermore, the LLM generates the app’s functionality
profile from this metadata, producing the following summary:

This app assists parents in managing pediatric vaccination
schedules with features like a dashboard, multi-child profiles,
editable schedules, vaccine info, and record logging. It offers
reminders, regional settings, and in-app guidance. User reports
indicate the presence of full-screen and pause-triggered ads.

➌ UI Data Acquisition and Enhancement
For each inferred transformation method, an iOS agent

executes the app binary while simultaneously capturing both
a visual screenshot and its corresponding UI hierarchy. To
overcome the four principal constraints of UI trees discussed

8

(b) Initial View Hierarchy (UI Tree) (c) Tree Pruning

②

③

④

①

②

①
③

④

(a) UI Screenshot (d) Semantic Supplementation

Enhanced
UI Tree

<AppiumAUT>

└── <Application/Window name="TranquilAngler">

├── <Image />

├── <Button name="btn_bg_0" />

├── <Button name="btn_bg_1" />

├── <Button name="btn_bg_2" />

├── <Button name="btn_bg_3" />

├── <Button name="btn_bg_4" />

├── <StaticText value="TranquilAngler" />

├── <Button value="DIFFICULTY LEVEL" />

├── <Button />

├── <Button value="TYPE OF FISH" />

├── <Button value="SKIN" />

└── <Button value="TOUCH TEXT" />

①

②

③

④

RedundancyNoisy
elements

Structural
misalignment

<AppiumAUT>

└── <Application/Window name="TranquilAngler">

├── <Image ocr_text="Tranquil Angler" />

├── <Button icon_label="ICON_CHAMPION"
├── <Button icon_label="ICON_EDIT" />
├── <Button icon_label="ICON_CLEAN" />
├── <Button icon_label="ICON_CHECK" />
├── <Button icon_label="ICON_INFO" />

├── <StaticText value="TranquilAngler" />

├── <Button value="DIFFICULTY LEVEL" />

├── <Button ocr_text="START" />

├── <Button value="TYPE OF FISH" />

├── <Button value="SKIN" />

└── <Button value="TOUCH TEXT" />

①

②

③

④

Semantic
deficiency

Noisy elements

Semantic
deficiency

<AppiumAUT>
└── <Application name="TranquilAngler">

├── <Window>
│ └── <Other>
│ ├── <Other>
│ ├── <Button name="btn_bg_0" />
│ ├── <Button name="btn_bg_1" />
│ ├── <Button name="btn_bg_2" />
│ ├── <Button name="btn_bg_3" />
│ ├── <Button name="btn_bg_4" />
│ ├── <Button name="TYPE OF FISH">
│ │ └──<StaticText value="TYPE OF FISH" />
│ ├── <Button name="SKIN">
│ │ └──<StaticText value="SKIN" />
│ ├── <Button name="TOUCH TEXT">
│ │ └──<StaticText value="TOUCH TEXT" />
│ ├── <Button>
│ ├── <Button name="DIFFICULTY LEVEL">
│ │ └──<StaticText value="DIFFICULTY LEVEL"/>
│ ├── <StaticText value="TranquilAngler" />
│ └── <Image />
│
└── <Window>

└── <Other>
└── <……>

Redundancy

Semantic deficiency

Semantic deficiency

Noisy elements

Structural
misalignment

Fig. 6: View hierarchy (UI tree) enhancement procedure demonstrated using the “Tranquil Angler” app.

in §IV-B, we implement two critical improvements, tree
pruning and semantic supplementation, prior to processing
the interface data through LLMs for enhanced interpretation.
Fig. 6 demonstrates this refinement process using the “Tranquil
Angler” app as a case study, with Fig. 6(b) specifically depicting
the UI tree limitations originally shown in Fig. 4.

Tree Pruning. This enhancement primarily involves:

• Removing Noisy Elements: Our approach leverages the
observation that semantically meaningful nodes predomi-
nantly reside at leaf positions in UI trees. To enhance LLMs’
focus on these critical elements, we systematically eliminate
noise by removing irrelevant UI components (i.e., those with
zero dimensions, off-screen positioning, or empty containers)
along with non-critical attributes (which functions merely as a
structural container indicator rather than denoting actionable
or meaningful interface elements) from the raw UI tree.

• Reducing Redundancy: We then perform recursive con-
solidation of single-child nodes with their parents, merging
elements with identical frames or overlapping types while pre-
serving distinct attributes (e.g., retaining unique values like
TYPE OF FISH). This method maintains strict element-
to-visual alignment between the UI tree and screenshot
representation, effectively minimizing structural redundancy.

• Correcting Structural Misalignment: We reorganize the
node structure into a systematic left-to-right, top-to-bottom
grid layout according to their absolute coordinates in the UI
screenshot, thereby resolving structural inconsistencies.

Semantic Supplementation. Despite pruning, LLMs may still
misinterpret UI elements with insufficient semantic context,
particularly unlabeled icons and images. Table III documents
instances where LLMs misinterpret functional icons’ purposes
without proper semantic augmentation. To mitigate this, we
propose targeted semantic enrichment:

TABLE III: Functional icon examples requiring semantic
augmentation for accurate LLM interpretation.

Icon Ground-truth Interpretation

Settings icon, directing to a comment submission interface.

Close button, specifically designed for a particular ad.

Smile icon, denoting user profile w/ an embedded contact option.

Information query icon, intended to access the feedback page.

• For Icons, we identify functional ones typically situated at
leaf nodes of view hierarchies. Candidate icons are defined
as leaf nodes with minimal descriptive attributes and proper
geometric shapes (circular or square), as demonstrated in
Table III. Using the RICO Semantics dataset [41], we
implement a lightweight EfficientNet-B0 model [42] to
generate semantic annotations (e.g., X mark, SETTINGS,
MAGNIFYING_GLASS), which are incorporated as node
attributes to enhance icon interpretability.

• For Images, we employ PaddleOCR [43] to extract em-
bedded text from bounding boxes. The refined UI tree
undergoes traversal to locate the optimal matching node (i.e.,
the smallest enclosing frame), with extracted text appended
as supplementary attributes (e.g., ocr_text="Tranquil
Angler" in Fig. 6(d)).

➍ UI Comprehension
The visual UI screenshots and enriched view hierarchies are

subsequently analyzed by LLMs for interface understanding.
As outlined in §IV-B, combining both screenshots and view
hierarchies for UI representation helps mitigate challenges
stemming from dynamic element disruptions and lack of
semantic labeling for functional icons.
<instruction>

Given the {view hierarchy in XML} and a {runtime
screenshot}, perform comprehensive UI analysis
by: (1) establishing visual correspondence
between hierarchy elements and screenshot
regions while filtering non-matching or obscured
components; (2) classifying all UI elements as
either non-interactive (e.g., labels, static
content) or interactive (e.g., buttons,
clickable icons, input fields). Pay special
attention to promotional content, transient
dialogs, and system messages, with documentation
of their dismissal mechanisms. Present the
final analysis as a structured inventory of UI
elements without additional commentary.

</instruction>
<output_format>

Return a list where each item is a JSON object
representing a single UI element with the
following fields: "type" (string), "state" (
string), "text" (string), and "description."

</output_format>

Listing 2: Prompt template for UI comprehension.

The UI Comprehension process generates a structured
representation of all visible UI elements—including their

9

<AppiumAUT>
└─<Application/Window name="MiaoMiao Vaccination">

├──<Frame />
├──<Frame name="Kids List" />
├──<Button icon_label="ICON_CHAT" />
├──<Frame />
├──<Button name="Ben Male * 4 Months" />
├──<Button name="Emma Female * 2 Months" />
├──<Button icon_label="ICON_PLUS" ocr_text="+" />
├──<Frame />
├──<Button name="Kid Tab 1 of 2" value="1" />
├──<Button name="Knowledge Tab 2 of 2" />
└──<Frame />

Screenshot

Enhanced View Hierarchy

LLM

UI Comprehension

Summary: The UI displays a header with the title "Kids List" and a chat
icon at the top. Below, a list of children and their details is presented,
followed by a "+" button to add a new child. At the bottom, there are two
navigation tabs: "Kid" and "Knowledge".
Feature: No advertisements, pop-ups, or feedback messages are present.
Elements (7 in total):
Button (id: 5) for accessing chat or messages in the top-right corner;
Button (id: 9) for adding a new child in the bottom-right corner;

Fig. 7: The main interface of Vaccination Schedule, its
enhanced view hierarchy, and the output of UI comprehension.

categories, states, and semantic meanings—with particular
emphasis on disruptive components such as pop-up ads. The
prompt template for this process appears in Listing 2.

Fig. 7 presents the optimized view hierarchy of
the Vaccination Schedule app alongside the LLM-
generated interpretation of its main interface.

➎ Decision Making and Action Sequence Generation
Leveraging current UI comprehension outputs and historical

action data, the LLM systematically generates executable
action sequences to accomplish the target task (i.e., a potential
transformation method to be verified). To address the UI
navigation challenges outlined in §IV-B while ensuring accurate
and adaptive automation, we implement a structured Chain-
of-Thought reasoning approach, guiding LLMs through the
following 6 phases, as depicted in Fig. 8.
(1) Task Progress Evaluation: Assesses current advancement

toward the main goal by analyzing unresolved prerequisites
(e.g., incomplete input fields, pending steps) and correlates
them with historical logs to generate progress reports.

(2) Repetitive Action Analysis: Analyzes action history to
flag recurring sequences (>3 iterations) via pattern analysis,
identifying necessary repetition, or triggering alternative
path generation or strategy adjustments aligned with the
primary task objective to avoid stagnation.

(3) Exploration/Completion Strategy Selection: Determines
workflow prioritization (direct task progression vs. UI
exploration) based on real-time interface responsiveness,
task urgency, and historical success rates of similar actions.

(4) Context-Specific Subtask Identification: Decomposes
overarching goals into atomic subgoals (e.g., Complete
login form) by mapping available UI elements (buttons,
input fields) to task requirements, ensuring alignment with
the main objective.

(5) Action Generation: Produces executable commands
(clicks, inputs) bound to element IDs, with enforced
completeness verification (including form field population
checks and target element validation) before execution.

Evaluate
Task Progress

Action execution historyUI elements

Task progress

Action reportAnalyze
Repetitive Action

Deliberate
Strategy & Subtask

Page report

Main task

Recent actions

Generate
Action Sequence

Document
Action History

Subtask

UI Exploration ? Action1
Type Target

Rationale

Action2
Type Target

Rationale...

Action summary

Page summary

Actionn
Type Target

Rationale

Action sequence

Action history

Input to LLM

Intermediate result

Output of LLM

Procedure of CoT

Data or code flow










Fig. 8: Chain-of-thought reasoning process for decision making
and action sequence generation.

(6) Action History Documentation: Maintains a dual-format
action log comprising human-readable UI page semantics
(e.g., Settings menu with toggle switches)
and action summaries (e.g., click [Submit] to
navigate to dashboard), supporting real-time au-
ditability and retrospective analysis. Successful executions
are archived in the historical record.

Such intelligent decision-making capability facilitates dy-
namic workflow adjustments and emulates human-like interac-
tion by circumventing unresponsive components, preventing
repetitive operations, and restarting apps to eliminate persistent
overlays. Furthermore, it promotes active exploration in the face
of ambiguous tasks by systematically examining all remain-
ing actionable elements while avoiding previously attempted
actions, thereby ensuring an exhaustive traversal of each UI
interface to comprehensively evaluate all potential solutions.
The prompt template for LLM interaction is shown in Listing 3.
<instruction>

Given the {current UI elements}, {action
execution history}, and {primary task}, employ
structured reasoning to: (1) identify the most
appropriate immediate sub-task, and (2)
formulate a coherent, goal-oriented action
sequence. Prioritize handling urgent UI
components (e.g., advertisements, pop-up dialogs
), avoid redundant operations, and ensure all
proposed actions maintain contextual relevance,
operational feasibility, and explicit
justification. Present the analysis as
structured output without additional commentary.

</instruction>
<output_format>

Return a single JSON object containing the
following fields: "summary" (string), "
history_analysis" (string), "subtask" (string),
and "action_plan" (a list of JSON objects, each
containing "action" and "rationale" strings).

</output_format>

Listing 3: Prompt template for decision making and action
sequence generation.

Fig. 9 demonstrates the module’s processing of the
Vaccination Schedule app’s current UI page.

10

Screenshot Decision Making and Action Sequence Generation

(1) Task Progress Evaluation: Launched the application and navigated to a
page titled "Kids List". Explored the chat icon to access a messaging or
contact section.
(2) Repetitive Action Analysis: This page has not been visited previously; it
contains a contact form labeled "Contact Us" with an input field and buttons
for "Cancel" and "Submit".
(3) Exploration/Completion Strategy Selection: The current page is directly
relevant to the task, as it includes the "Contact Us" section where the task is
to input "666."
(4) Context-Specific Subtask Identification: The task explicitly specifies
entering "666" in the "Contact Us" section, which directly aligns with the goal.
(5) Action Generation: The agent should input "666" into element id 6 (input
field) and then click element id 8 (submit button). Since the text has been
entered into the input field, the form can be submitted.
(6) Action History Documentation: In a contact form titled "Contact Us"
with an input field for feedback and buttons for "Cancel" and "Submit", the
agent should input "666" into the text field and click the "Submit" button to
submit the form.

LLM Agent

Fig. 9: The Decision Making and Action Sequence Generation
module’s output for Vaccination Schedule’s current UI.

CHAMELEOSCAN evaluates both page visitation history
and task relevance before generating executable instructions
involving: (1) locating the “Contact Us” form, (2) entering
“666” in the specified input field, and (3) submitting the form -
thereby guiding the iOS agent’s subsequent operations.

➏ Action Execution
The agent then sequentially executes generated actions to

complete an operational cycle. To address challenges posed
by dynamic elements (see §IV-B), we implement adaptive
execution strategies beyond direct action execution.

The temporal gap between UI data acquisition and the
eventual execution of actions may introduce transient UI
components (e.g., pop-ups) that invalidate initial analyses.
Such cases require restarting the cycle from data acquisition
to accommodate the updated interface context. Nonetheless,
certain apps inherently include dynamic elements (e.g., image
carousels) that are neither obstructive nor urgent. To prevent
such benign dynamics from disrupting analysis and decision-
making, we incorporate a similarity comparison mechanism
between view hierarchies captured before and after execution.
This mechanism determines whether a structural change
justifies a cycle restart. Specifically, (1) view hierarchies with
a tree edit distance below 3 are treated as similar, thereby
tolerating moderate dynamics in fixed-position components;
and (2) view hierarchies with a Jaccard index exceeding 0.8 for
all texts and labels are also regarded as similar, accommodating
content changes in visually stable frames. If either condition
is met and all intended action targets remain present, the UI is
deemed valid for continued execution.

These thresholds were empirically derived through manual
inspection of apps exhibiting dynamic content or transient UI
components. We examined 20 pairs of user interfaces captured
before and after dynamic UI changes (e.g., countdowns, pop-
ups), computing text-level Jaccard similarity coefficients. We
determined an optimal operating range (0.77-0.84) through
Youden index analysis [44], and then selected 0.8 as the
threshold that balances tolerance for benign content variations

against sensitivity to genuine UI changes. However, for apps
with minimal textual content (e.g., auto-scrolling galleries,
icon-heavy layouts), text-based similarity proves inadequate.
Through iterative testing, we determined that a tree edit distance
threshold of 3 effectively accommodates minor structural
modifications (equivalent to 1-2 leaf-node operations) while
reliably detecting significant layout transformations.

Furthermore, for disruptive elements with consistent struc-
tures (e.g., system permission dialogs, ads with identifiable
close buttons), we implement predefined handlers for immediate
dismissal upon detection, significantly improving both system
responsiveness and operational efficiency. The framework addi-
tionally incorporates recovery protocols (e.g., app foreground-
ing, keyboard dismissal) to address potential operational errors.
Unrecoverable failures, including app crashes or hardware
incompatibilities, are classified as detection failures.

➐ Transformation Validation
Our preliminary investigation (§III-B4) reveals that success-

ful transformation consistently converts Chameleon apps into
an illicit operational mode, with unambiguous UI evidence
revealing hidden functionalities. To detect such transformations,
CHAMELEOSCAN employs a structured four-phase LLM-
guided framework that systematically analyzes discrepancies
between an app’s runtime behavior and its functionality profile
derived from App Store metadata:
(1) Functionality Consistency Analysis: LLMs assess align-

ment between observed runtime behaviors and declared
functionalities, flagging significant mismatches as positive
detections while confirming compliant pages as negative.

(2) Non-Indicative Element Filtering: LLMs identify and
exclude interface elements unrelated to core functionality
or transformation indicators (e.g., ads, settings panels), au-
tomatically designating such screens as negative detections.

(3) Evidence-Based Reasoning: LLMs must provide explicit,
observable UI evidence (e.g., “hidden mode” toggle exists)
for all determinations to mitigate hallucination issues.

(4) Confidence-Based Scoring: LLMs assign standardized
discrepancy scores (0.0-1.0 scale), where scores ≥0.8
confirm transformation, ≤0.5 indicate compliance, and
intermediate scores flag cases requiring further scrutiny.
These scores function exclusively as decision-making aids.

The implementation utilizes few-shot learning with care-
fully selected exemplars in a structured prompt framework,
combining App Store metadata with runtime UI evidence
(screenshots and extracted text labels). CHAMELEOSCAN main-
tains rigorous evidence-based validation by strictly tethering
all determinations to observable interface characteristics. The
prompt template is provided in Listing 4.
<instruction>

Given the {runtime behavior} and {app metadata},
determine whether the observed app runtime
behavior clearly contradicts or deviates from
the app’s declared functionality. Base your
assessment exclusively on visible UI evidence,
citing specific textual or visual indicators to
support your conclusions. Additionally, flag
instances where advertisements or transient

11

elements substantially obstruct interface
evaluation. Provide no additional output.

</instruction>
<output_format>

Return a list containing a single JSON object
with the following fields: "determination" (
string), "confidence" (float between 0-1), and "
rationale" (1-3 sentences). Adhere strictly to
the exemplar structure provided in <examples>.

</output_format>
<examples>

1. Input: [runtime behavor_1], [metadata_1];
Output: [determination_1], [confidence_1], [
reasoning_1]}
2. Input: [runtime behavor_2], [metadata_2];
Output: [determination_2], [confidence_2], [
reasoning_2]}
...
n. Input: [runtime behavor_n], [metadata_n];
Output: [determination_n], [confidence_n], [
reasoning_n]}

</examples>

Listing 4: Prompt template for transformation validation.

To address apps that disclose transformation methods solely
through runtime indicators, we augment the few-shot examples
with observed behavioral patterns, enabling effective identi-
fication and extraction of such methods. When explicit cues
such as “unlock hidden mode” are detected, the Transformation
Validation module returns an immediate positive result. For
implicit instructions like “Click the submit button 3 times to
proceed,” the system records the cue in the action history and
adjusts the exploration path in subsequent iterations.

We demonstrate CHAMELEOSCAN’s workflow through the
Vaccination Schedule case study, documenting the
complete detection pipeline from initial metadata analysis and
transformation inference (➊–➋) to iterative UI processing
cycles encompassing acquisition, comprehension, decision-
making, action execution, and validation (➌–➐). The full
procedural sequence is detailed in Appendix A (Fig. 11–14).

V. EVALUATION

We assess CHAMELEOSCAN’s effectiveness by investigating
three critical research questions:
• RQ1: How does it perform overall on the KNOWN dataset

of apps collected in the preliminary study (§III)?
• RQ2: How does it perform on core tasks essential to

automated detection on the KNOWN dataset?
• RQ3: How effectively does it identify Chameleon apps in

practical deployments using an UNKNOWN dataset?

A. Experiment Setup

Data Collection. To evaluate CHAMELEOSCAN, we con-
structed two distinct datasets: KNOWN and UNKNOWN. (1)
KNOWN dataset. We began by selecting a pool of popular
apps from the App Store based on reputable developers, high
popularity, and compatibility with our test devices. From this
collection, 300 apps were randomly sampled and downloaded.
Following metadata inspection and manual testing on real de-
vices, 233 apps spanning 26 categories were verified as benign
(e.g., TikTok, TestFlight). Together with the 234 Chameleon

TABLE IV: CHAMELEOSCAN’s detection efficacy on KNOWN
Type AR Recall (%) Recall′ (%)

Auto-Transformation 2.58 95.00 100.00
Spatiotemporal-Based 0.50 100.00 100.00

Click-Based 2.81 77.27 100.00
Input-Based 4.18 55.22 92.50

Total 3.45 71.76 96.91

apps described in §III-A, they form the KNOWN dataset.
For tests requiring execution on real devices, a functional
subset of 131 active Chameleon apps was utilized, excluding
those that became non-operational between collection and
evaluation periods. (2) UNKNOWN dataset. The dataset was
constructed through continuous monitoring of newly released
App Store apps throughout December 2024. From 23,416
initially collected apps, quality-control filtering preserved 3,253
entries demonstrating active user adoption (non-zero down-
loads). Subsequent compatibility testing confirmed 1,644 apps
as device-testable, distributed across 39 categories, with Utility
emerging as the dominant category at 16.85% representation.

Experiment Environment. The iOS agent in
CHAMELEOSCAN was developed through integration of
established open-source tools: Frida [45] provided application
lifecycle management and runtime context manipulation,
Appium [46] (via XCUITest) enabled comprehensive UI
hierarchy analysis including hybrid-rendered components
(Flutter and WebView implementations), and ZXTouch [47]
facilitated precise system-level interaction simulation (including
rapid touch sequences and text input). libimobiledevice [48]
managed device communication and application operations
(installation/uninstallation processes and screenshot capture),
with system parameter modifications (temporal and geolocation
data) executed through SSH command-line operations. All
testing occurred on an iPhone XR (iOS 14.4.1) under
controlled laboratory conditions.

B. RQ1: Performance on KNOWN Dataset

We conducted end-to-end testing on the KNOWN dataset.
Table IV shows CHAMELEOSCAN’s detection efficacy across
3 metrics: recall, precision, and average round (AR) denoting
the mean execution iterations needed per app for detection.

Overall, CHAMELEOSCAN achieves a recall of 71.76% and
a precision of 100%. Among the four Chameleon app types,
Auto-Transformation and Spatiotemporal-Based apps attain
high recall rates of 95% and 100%, respectively. In contrast,
Click-Based and Input-Based apps show lower recall, likely
due to the increased complexity in identifying transformation
triggers and completing the associated transformation task au-
tomatically. The limited false negatives in Auto-Transformation
detection predominantly occur when apps launch with full-
screen advertisements containing obfuscated close buttons that
resist reliable automated recognition. To evaluate robustness
under optimized conditions, we further assessed recall (denoted
as Recall′ in Table IV) on a subset of 97 apps whose
transformation behaviors can be triggered solely using user
review information by professional security auditors. In this

12

0 3 6 9 12 15
Rounds

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Auto-Transformation
Spatiotemporal-Based
Click-Based
Input-Based

(a) Overall Recall Curves

Auto-T. Spatio-B. Click-B. Input-B.
Transformation Method Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
te

Categories
Manual Annotation
Coverage Rate
Best Match Rate

(b) Accuracy of Method Inference

Fig. 10: Performance evaluation of CHAMELEOSCAN: (a)
recall curves across interaction rounds by Chameleon app type,
(b) accuracy of transformation method inference by app type.

setting, CHAMELEOSCAN achieves 100% recall for Click-
Based apps and 92.50% for Input-Based apps, demonstrating
that its automation and auditing capabilities closely approach
human-level performance.

To demonstrate efficiency, we plotted recall across inter-
action rounds, shown in Fig. 10a. Notably, 70.00% of Auto-
Transformation and 100% of Spatiotemporal-Based apps are
successfully identified within 3 rounds. The remaining Auto-
Transformation apps require more rounds due to intrusive ads
with obfuscated close buttons not present in the view hierarchy.
The other two Chameleon types show more gradual recall
growth. Nevertheless, among detected apps, 14 out of 17 Click-
Based and 24 out of 37 Input-Based apps are identified within
6 rounds. On average, CHAMELEOSCAN requires only 2.26
rounds per app (3.45 for Chameleon and 1.59 for benign).

C. RQ2: Task-wise Performance

We analyze CHAMELEOSCAN’s performance across three
representative tasks: (i) inferring transformation methods, (ii)
recognizing and semantically understanding UI elements, and
(iii) handling interference and dynamic UI changes.

Transformation Method Inference. We analyze the trans-
formation method inference results for 234 Chameleon apps
and 233 benign apps in the KNOWN dataset. On average,
CHAMELEOSCAN infers 0.71 transformation methods per
Chameleon app and 0.08 per benign app. Fig. 10b presents the
coverage and best match rates, defined as the proportion of
apps where the predicted method with the highest confidence
aligns with the actual transformation method, across the four
Chameleon app types, compared with manual annotation
results. For Auto-Transformation and Spatiotemporal-Based
apps, both manual and automated recognition accuracies are
relatively low, as these simpler strategies are rarely mentioned
explicitly in user reviews. In contrast, for Click-Based and
Input-Based apps, the inference module demonstrates strong
coverage and best match rates, closely approximating manual
performance (42.3%/30.77% vs. 42.3% for Click-Based, and
49.61%/48.82% vs. 52.76% for Input-Based). Additionally, the
module successfully decodes obfuscated cues, e.g., deriving
“5201080” from “⑤2o①o8o.”

An ablation study removing BundleID and description
metadata reveals 12 failure cases where transformation methods
cannot be inferred. These apps exclusively employ Input-Based
methods requiring magic string codes (e.g., “666”), yet provide
no relevant cues present in user reviews or runtime behavior. By
contrast, with complete metadata, CHAMELEOSCAN success-
fully learns these codes from few-shot exemplars by identifying
latent metadata patterns (e.g., shared BundleID substrings like
“zw.sz” or similar app functionalities), confirming the critical
value of metadata components.

UI Element Recognition and Comprehension. With the UI
Data Acquisition and Enhancement module, CHAMELEOSCAN
effectively reduces noise in the view hierarchy and enriches it
with essential semantic cues. Specifically, the average token
length of the view hierarchy is reduced from 7,892 to 2,874,
while each UI page is supplemented with an average of 2.09
OCR-recognized texts and 2.28 icon classification results.

TABLE V: Component Impact Analysis for UI Element
Recognition and Comprehension: Evaluation of tree pruning
(Pruning), image semantic augmentation (SSimg), and icon
semantic enhancement (SSicon) on recognition precision (P),
recall (R), and accuracy (Acc) across 927 XML-formatted
interface pages from the KNOWN dataset.

Modules UI Recognition UI Comprehension
P (%) R (%) Acc (%) Acc (%)

{} 85.50 63.21 74.19 87.26
{ Pruning } 87.04 65.45 76.02 87.10

{ Pruning, SS img } 88.42 68.26 77.58 89.39
{ Pruning, SS icon } 87.84 66.38 77.05 91.85

{ Pruning, SS img, SS icon } 89.36 70.39 78.94 92.54

To evaluate how these enhancements improve the LLM’s
ability (specifically, the UI Comprehension module in §IV-C)
to identify interactive UI elements, we manually assessed
927 different UI pages encountered during app testing on
the functional ground-truth dataset. Our analysis focused on
two categories: (i) frequently observed UI elements related to
transformation methods, such as buttons, icons, and text fields
(as listed in Table II), and (ii) potential interference elements,
including ads and pop-ups. Based on this, we conducted an
ablation study to evaluate the contribution of each submodule,
as presented in Table V. CHAMELEOSCAN achieves an overall
precision of 89.36% and a recall of 70.39% in detecting key UI
elements, and enables the LLM to accurately infer the potential
functionalities of 92.54% of those elements. Additionally, we
quantitatively measured recall improvements for key element
types: icon recall increased from 57.22% to 77.45%, and text
field recall from 45.30% to 56.10%. These results mark a
significant enhancement over the baseline configuration without
the proposed submodules, forming a solid foundation for
downstream components while validating the effectiveness of
our design choices.

Interference Handling and Dynamic UI Manage-
ment. CHAMELEOSCAN demonstrates robust handling of
both distracting elements (e.g., ads, pop-ups) and dynamic
interface changes during task execution. System evaluation
across the KNOWN dataset yields a total of 4,415 UI pages

13

observed, with manual analysis identifying distracting elements
in 19.21% of cases (848 pages) affecting 39.19% of tested
apps. Overall, CHAMELEOSCAN achieved 96.70% precision
and 97.03% recall in identifying these elements, and further
managed to resolve 85.96% of intrusive ads (e.g., via dismissal,
countdown awaiting) and 95.56% of pop-up instances (e.g.,
through automated permission granting or dialog interpretation).
Without the proposed mitigation strategies, the system either
fails to resolve such interference or requires substantially
extended processing time, confirming the practical effectiveness
of our architectural decisions.

Furthermore, the Action Execution module’s dynamic el-
ement handler (§IV-C) detected 309 instances of significant
pre-execution UI modifications. By automatically discarding
outdated UI pages and re-extracting latest layouts, the system
maintained reliable task completion across dynamic transitions.

D. RQ3: Performance on UNKNOWN Dataset

To assess RQ3, we examined CHAMELEOSCAN’s detection
efficacy and runtime performance using the real-world UN-
KNOWN dataset, validating its ability to identify Chameleon
apps in previously unseen environments. The system catego-
rized all tested apps into either Chameleon apps or inconclusive
cases, as summarized in Table VII.

Detection Results. Out of 1,644 UNKNOWN apps,
CHAMELEOSCAN identified 162 (9.85%) as Chameleon apps,
with manual verification confirming a precision of 92.59%.
Among the 12 false positives, 8 resulted from ambiguous
app descriptions or interference from promotional content,
leading to misinterpretation. The remaining 4 were caused by
misclassification of legitimate UIs as suspicious.

For each of the remaining 1,482 inconclusive apps, we
manually inspect their app metadata, runtime UI behavior,
and whether they appeared in known Chameleon promotion
channels (Table I). This analysis revealed 35 missed Chameleon
apps (i.e., false negatives), 20 resulting from apps no longer
being maintained, which led to unresponsive or blank pages
after transformation attempts, and 15 due to failures in inferring
transformation methods or identifying semantically meaningful
clickable elements. These findings indicate that, under ideal
conditions, CHAMELEOSCAN could achieve even higher recall
and identify suspicious apps in real-world settings.

TABLE VI: Resource and Cost Analysis of CHAMELEOSCAN
on UNKNOWN dataset (1,644 apps).

Module / Submodule Avg. Time #Tokens Cost #Count
Transformation Method Inference 2.43 s 2,949 0.79 ¢ 1
Environment Setup and App Installation 9.23 s – – 1
App-agnostic Triggering Attempts 22.16 s – – 1
UI Data Acquisition and Enhancement

Acquisition 5.46 s – – 3.41
Enhancement 1.70 s – – 3.41

UI Comprehension 8.16 s 3,744 1.17 ¢ 3.41
Decision Making and Action Sequence Generation 4.49 s 2,612 0.90 ¢ 3.35
Action Execution 6.66 s – – 3.35
Transformation Validation 5.31 s 2,881 0.79 ¢ 3.40
Per App 133.99 s 27,686 10.48 ¢ –

Runtime Efficiency and Cost Analysis. Among the 162
Chameleon apps detected, 92.59% (150 apps) were identified
within 3 interaction rounds. The remaining 7.41% (12 apps)

TABLE VII: CHAMELEOSCAN’s detection on UNKNOWN

Category #Apps (Correct) AR Avg. Time (s) P (%)
Chameleon App 162 (150) 0.89 81.33 92.59

Inconclusive 1,482 (1,447) 2.13 139.74 97.53
Total 1,644 (1,597) 2.01 133.99 97.14

required an average of 7.67 rounds due to more complex trans-
formation logic. We further conducted a resource and cost anal-
ysis as illustrated in Table VI. On average, CHAMELEOSCAN
required 2.43 seconds for transformation inference, 8.16
seconds for UI comprehension, 4.49 seconds for decision
making, 6.66 seconds for action execution, and 5.31 seconds for
transformation validation. Each app took approximately 133.99
seconds to test, including 9.23 seconds for app installation and
22.16 seconds for app-agnostic transformation attempts, with a
token count of 27,686 (around $0.1). This observed timeframe
aligns with the predefined 2-minute limit of execution (typically
3–4 rounds) for cases without inferred transformations, as most
Auto-Transformation apps complete within this period. These
results highlight CHAMELEOSCAN’s efficiency, scalability, and
cost-effectiveness for large-scale deployment.

Insights from Newly Discovered Chameleon Apps. Analysis
of newly detected Chameleon apps yielded noteworthy insights.
• Emerging Illicit Services: While known Chameleon apps

predominantly facilitate gambling, pornography, and content
piracy, newly identified variants predominantly promote game
account trading platforms and financial services.

• Developer Attribution Patterns: Among 128 newly discov-
ered instances, a prevalent pattern involved automatic redi-
rection to external websites upon launch. Notably, developer
naming conventions frequently disclosed actual functionality,
for example, com.ImgPixerNwa (masquerading as a
calculator but redirecting to an e-wallet) bore the developer
designation “imtoken wallet app bitpie tpwallet tokenpocket
TP lMT.” Subsequent keyword analysis (“gamble,”“wallet”)
across 23,416 apps in the UNKNOWN dataset identified
153 additional apps associated with prohibited services,
confirming developer metadata as a reliable detection signal.

These results highlight CHAMELEOSCAN’s effectiveness in
detecting novel Chameleon apps under real-world conditions,
including those utilizing previously unobserved code patterns
or evasion techniques. The findings were responsibly reported
to Apple, which acknowledged the issues and expressed interest
in further dialogue regarding our study. While most reported
apps have since been removed from the App Store, we cannot
definitively attribute these takedowns to our disclosure.

E. Detection Performance Without User Reviews

While user reviews offer valuable transformation cues,
CHAMELEOSCAN achieves reliable detection through mul-
timodal analysis without exclusive reliance on them. As
highlighted in §III-B4, the system leverages multiple alternative
indicators including app metadata (BundleID and descriptions),
runtime interface patterns (e.g., pop-up notifications, ads), and
predefined transformation sequences. This approach success-

14

fully identified 23 of 44 review-deficient apps in the KNOWN
dataset, covering all four major transformation categories.

F. CHAMELEOSCAN vs. Chameleon-Hunter & Mask-Catcher

We evaluate CHAMELEOSCAN in comparison with two
closely related tools, Chameleon-Hunter [5] and Mask-
Catcher [6], based on a manually annotated dataset.

Comparison with Chameleon-Hunter. Prior work by Zhao et
al. [6] demonstrated Chameleon-Hunter’s limited effectiveness
against hybrid-framework Chameleon apps. In our evalua-
tion using the KNOWN dataset (234 apps), we successfully
decrypted and analyzed the Mach-O binaries of 223 apps,
revealing their UI framework implementations. The analysis
identified 89 apps (39.91%) utilizing Flutter for UI rendering,
76 exclusively and 13 combining Flutter with native UI
components. Furthermore, 16 apps (7.17%) employed WebView
to deliver illicit services through dynamically embedded URLs
rather than hardcoded. Collectively, 104 apps (46.64%) relied
on hybrid frameworks (Flutter or WebView) for either legitimate
or illicit functionality, significantly impairing Chameleon-
Hunter’s detection efficacy.

We further evaluated Chameleon-Hunter on a subset of
our newly discovered Chameleon apps, which define static
UI pages and view controllers in the binary but imme-
diately dismantle them during early callback flows (e.g.,
willConnectToSession), redirecting users to external
websites via Safari. As the destination URLs are dynamically
fetched from CloudKit at runtime, without any hard-coded
traces in the binary, such designs completely evade the static
analysis techniques employed by Chameleon-Hunter.

Comparison with Mask-Catcher. To compare with the
performance of Mask-Catcher, we gathered metadata for 185
manually labeled Chameleon apps from the UNKNOWN dataset
(57 containing user reviews and 128 review-free instances),
along with 172 apps recommended under the “You Might Also
Like” section. Given the unavailability of original models and
threshold configurations, we reimplemented its core logic based
on published source code.

Mask-Catcher successfully flagged 46 apps as suspicious, pre-
dominantly through detecting semantic inconsistencies between
app descriptions and user reviews (44 out of 46). However,
this detection was exclusively limited to apps containing user
reviews, with none of the 128 review-free apps being flagged.
Although Mask-Catcher can infer suspicious apps based on
recommendation relationships, only 19 apps in our dataset
exhibited such connections (including 5 without reviews), of
which merely 8 were flagged as suspicious.

Mask-Catcher may fail to detect Chameleon apps even when
relevant user reviews are available. The failure to detect 11
such apps can be attributed to the following factors: 3 cases
involved language discrepancies between app descriptions and
reviews (e.g., English descriptions paired with Chinese reviews),
disrupting semantic alignment; 2 cases contained insufficient
quantities of suspicious reviews; and 4 cases resulted from
erroneous filtering of potentially suspicious content (e.g.,

repeated numerical patterns like “777”). The remaining 2 cases
involved coordinated campaigns flooding apps with irrelevant
positive reviews (e.g., “TV, works great”), effectively drowning
out genuine user feedback and subverting review-based analysis.
These findings highlight how strategic obfuscation tactics and
coordinated user behavior undermine Mask-Catcher.

In Mask-Catcher, the identification of suspicious apps re-
quires additional analysis using BinDiff [49]. While we did not
replicate Mask-Catcher’s full classifier pipeline, we examined
the distribution of maximum similarity scores between 58
suspicious apps from our UNKNOWN dataset and 79 labeled
Chameleon apps from the KNOWN dataset. The results show
that 94.83% of suspicious apps had a maximum similarity score
below 0.5, with 36.21% falling below 0.25. A control group
of benign apps exhibited a comparable pattern, with 30.00%
scoring below 0.25 and all scoring below 0.5. These findings
indicate that many suspicious apps are not mere repackaged
versions but are likely independently developed or significantly
restructured. Importantly, CHAMELEOSCAN was still able to
detect them effectively, demonstrating strong generalization
beyond known code patterns.

VI. DISCUSSION

Hallucination Mitigation. To address potential LLM hal-
lucinations, we have incorporated multiple strategies: (i)
transformation behaviors undergo dual-validation protocols
before final determination to minimize false positives; (ii) the
LLM is explicitly prompted to verify action preconditions
during Chain-of-Thought reasoning processes; and (iii) each
operational iteration incorporates code-level verification (e.g.,
UI element identifier validation) and operational safeguards
(e.g., app foreground management or keyboard dismissal).
While occasional false positives may still occur due to factors
like deliberately obfuscated ads or low-quality app content,
our approach achieves 97.14% precision on the UNKNOWN
dataset (as documented in Table IV), demonstrating effective
hallucination management.

Evasion Resistance. Our methodology builds upon two key
empirical observations: Chameleon apps predominantly employ
straightforward transformation mechanisms frequently revealed
through app metadata or runtime interface elements. While
adversaries could theoretically employ evasion tactics such as
extended delay mechanisms, geo-location restrictions, server-
side control, generic descriptions, and review manipulation,
these strategies inherently conflict with fundamental character-
istics of Chameleon apps. Extended delays compromise user
engagement, strict geo-fencing limits audience reach, server-
side control increases operational complexity, and compre-
hensive review sanitization remains practically infeasible due
to platform constraints. To achieve scalability, attackers must
maintain app discoverability, inevitably generating detectable
signals across user reviews, runtime behaviors, and network
communications, precisely where our dynamic analysis excels.

Potential countermeasures include multi-epoch cross-regional
testing for delayed or geo-restricted transformations, network

15

traffic analysis for remote configuration detection, review-
graph examination for off-platform promotion patterns, and
optional human verification for ambiguous cases. These ap-
proaches strategically target modifiable adversary behaviors
while leveraging immutable constraints including usability
requirements, scalability needs, and the fundamental necessity
to communicate transformation methods to end users.

Novelty and Advancement. Our work establishes a systematic
taxonomy of transformation methods, an area previously
underdeveloped. Unlike prior studies, we provide precise
operational definitions for these methods and empirically
examine their prevalence in the real world.

Existing detection methods [5], [6] frequently prove inade-
quate even against established transformation types, particularly
when apps employ hybrid frameworks or expose transformation
logic exclusively during runtime without metadata indicators.
The dependence of these approaches on static analysis and
metadata fundamentally constrains their effectiveness in such
scenarios, highlighting the necessity of our dynamic, mul-
timodal methodology as a substantive advancement beyond
incremental, rule-based improvements.

Furthermore, our work addresses two distinct challenges
previously unresolved by existing approaches. First, conven-
tional methods demonstrate insufficient capability for accurately
identifying relevant UI elements and efficiently managing
distracting interface components within our problem context.
Second, we resolve the unique challenge of executing fine-
grained exploration under ambiguous task specifications, where
transformation methods typically lack the precise input param-
eters required for deterministic automation.

Limitations. Although dynamic analysis offers dis-
tinct advantages for detecting instant-transformation apps,
CHAMELEOSCAN’s effectiveness depends critically on acces-
sible app metadata and runtime UI information. The LLM
integration, while enabling advanced analysis, introduces
substantial computational overhead that may limit scalability
in production environments. While technically adaptable to
Android through agent substitution, this portability remains
unevaluated given the current absence of verified Android
Chameleon instances.

VII. CONCLUSION
In this study, we introduce a comprehensive dataset of 500

iOS Chameleon apps, enabling systematic identification of
10 categories of distinct transformation patterns (including
4 novel variants). We further propose CHAMELEOSCAN,
a novel LLM-driven automated UI exploration framework
that integrates predictive metadata analysis with human-par
interaction strategies for reliable Chameleon app verification.
Rigorous evaluation confirms the system’s detection efficacy
and operational practicality, demonstrating significant advance-
ments in automated mobile interface analysis.

VIII. ETHICAL CONSIDERATIONS

We follow the ethical guidelines set forth in the Menlo
Report [50], maintaining a careful balance between potential

risks and research benefits. No financial incentives were
provided to Chameleon app developers during our consultations
on evasion techniques. While downloading and activating
hidden functionalities may yield minimal financial benefit
for developers, we consider such incidental gains negligible
relative to the broader positive impact of this work, which aims
to improve understanding and mitigation of Chameleon apps
within the research community.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China (No.2023YFB3106800) and the National
Natural Science Foundation of China (No.62272410).

REFERENCES

[1] “Porn apps disguised as learning apps on China’s iOS
App Store,” TechNode, https://technode.com/2023/10/08/
porn-apps-disguised-as-learning-apps-on-chinas-ios-app-store.

[2] “Porn platform poses as a snack delivery app on iOS,” LINE TODAY,
https://today.line.me/hk/v2/article/DPeGZV.

[3] “2023 App Store transparency report,” https://www.apple.com/legal/
more-resources/docs/2023-App-Store-Transparency-Report.pdf.

[4] Y. Lee, X. Wang, K. Lee, X. Liao, X. Wang, T. Li, and X. Mi,
“Understanding iOS-based crowdturfing through hidden UI analysis,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
765–781.

[5] Y. Lee, X. Wang, X. Liao, and X. Wang, “Understanding illicit UI in iOS
apps through hidden UI analysis,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 5, pp. 2390–2402, 2019.

[6] Y. Zhao, L. Yu, Y. Sun, Q. Liu, and B. Luo, “No source code? no problem!
demystifying and detecting mask apps in iOS,” in Proceedings of the
32nd IEEE/ACM International Conference on Program Comprehension,
2024, pp. 358–369.

[7] H. Wen, Y. Li, G. Liu, S. Zhao, T. Yu, T. J.-J. Li, S. Jiang, Y. Liu,
Y. Zhang, and Y. Liu, “Autodroid: LLM-powered task automation in
Android,” in Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, 2024, pp. 543–557.

[8] D. Ran, H. Wang, Z. Song, M. Wu, Y. Cao, Y. Zhang, W. Yang, and
T. Xie, “Guardian: A runtime framework for LLM-based UI exploration,”
in Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2024, pp. 958–970.

[9] Z. Chen, L. Wu, Y. Hu, J. Cheng, Y. Hu, Y. Zhou, Z. Tang, Y. Chen,
J. Li, and K. Ren, “Lifting the grey curtain: Analyzing the ecosystem
of Android scam apps,” IEEE Transactions on Dependable and Secure
Computing, vol. 21, no. 4, pp. 3406–3421, 2024.

[10] Y. Hu, H. Wang, Y. Zhou, Y. Guo, L. Li, B. Luo, and F. Xu, “Dating
with Scambots: Understanding the Ecosystem of Fraudulent Dating
Applications,” IEEE TDSC, 2018.

[11] Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li,
and Z. Qin, “DeUEDroid: Detecting Underground Economy Apps Based
on UTG Similarity,” in ACM ISSTA, 2023.

[12] G. Hong, Z. Yang, S. Yang, X. Liaoy, X. Du, M. Yang, and H. Duan,
“Analyzing Ground-truth Data of Mobile Gambling Scams,” in IEEE
S&P, 2022.

[13] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable
and accurate zero-day android malware detection,” in Proceedings of
the 10th International Conference on Mobile Systems, Applications, and
Services. Association for Computing Machinery, 2012, p. 281–294.

[14] Y. Gao, H. Wang, L. Li, X. Luo, G. Xu, and X. Liu, “Demystifying
Ilegal Mobile Gambling Apps,” in Proceedings of the Web Conference,
2021, pp. 1447–1458.

[15] Y. Liu, Y. Zhang, B. Liu, H. Duan, Q. Li, M. Liu, R. Li, and J. Yao,
“Tickets or privacy? understand the ecosystem of chinese ticket grabbing
apps,” in 33rd USENIX Security Symposium (USENIX Security 24), 2024,
pp. 5107–5124.

[16] M. Egele, C. Krügel, E. Kirda, and G. Vigna, “PiOS: Detecting privacy
leaks in iOS applications,” in Network and Distributed System Security
Symposium, 2011.

16

https://technode.com/2023/10/08/porn-apps-disguised-as-learning-apps-on-chinas-ios-app-store
https://technode.com/2023/10/08/porn-apps-disguised-as-learning-apps-on-chinas-ios-app-store
https://today.line.me/hk/v2/article/DPeGZV
https://www.apple.com/legal/more-resources/docs/2023-App-Store-Transparency-Report.pdf
https://www.apple.com/legal/more-resources/docs/2023-App-Store-Transparency-Report.pdf

[17] D. Kong, L. Cen, and H. Jin, “Autoreb: Automatically understanding the
review-to-behavior fidelity in android applications,” in Proceedings of
the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 530–541.

[18] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large
effect: Measuring the impact of user reviews on android app security &
privacy,” in 2019 IEEE symposium on Security and Privacy (SP). IEEE,
2019, pp. 555–569.

[19] M. Hatamian, J. Serna, and K. Rannenberg, “Revealing the unrevealed:
Mining smartphone users privacy perception on app markets,” Computers
& Security, vol. 83, pp. 332–353, 2019.

[20] C. Tao, H. Guo, and Z. Huang, “Identifying security issues for mobile
applications based on user review summarization,” Information and
Software Technology, vol. 122, p. 106290, 2020.

[21] H. Gao, C. Guo, G. Bai, D. Huang, Z. He, Y. Wu, and J. Xu, “Sharing
runtime permission issues for developers based on similar-app review
mining,” Journal of Systems and Software, vol. 184, p. 111118, 2022.

[22] R. Wang, Z. Wang, B. Tang, L. Zhao, and L. Wang, “Smartpi:
Understanding permission implications of android apps from user reviews,”
IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2933–2945,
2019.

[23] H. Wu, W. Deng, X. Niu, and C. Nie, “Identifying key features from
app user reviews,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 922–932.

[24] Y. Hu, H. Wang, T. Ji, X. Xiao, X. Luo, P. Gao, and Y. Guo, “Champ:
Characterizing undesired app behaviors from user comments based on
market policies,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 933–945.

[25] Y. Song, Y. Bian, Y. Tang, G. Ma, and Z. Cai, “Visiontasker: Mobile task
automation using vision based ui understanding and llm task planning,”
in Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology, 2024, pp. 1–17.

[26] A. R. Sereshkeh, G. Leung, K. Perumal, C. Phillips, M. Zhang, A. Fazly,
and I. Mohomed, “Vasta: a vision and language-assisted smartphone task
automation system,” in Proceedings of the 25th international conference
on intelligent user interfaces, 2020, pp. 22–32.

[27] M. D. Vu, H. Wang, J. Chen, Z. Li, S. Zhao, Z. Xing, and C. Chen,
“Gptvoicetasker: Advancing multi-step mobile task efficiency through
dynamic interface exploration and learning,” in Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology,
2024, pp. 1–17.

[28] L. Zhang, S. Wang, X. Jia, Z. Zheng, Y. Yan, L. Gao, Y. Li, and M. Xu,
“Llamatouch: A faithful and scalable testbed for mobile ui automation
task evaluation,” arXiv preprint arXiv:2404.16054, 2024.

[29] B. Wang, G. Li, and Y. Li, “Enabling conversational interaction with
mobile ui using large language models,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, 2023, pp. 1–17.

[30] T. Huang, C. Yu, W. Shi, Z. Peng, D. Yang, W. Sun, and Y. Shi,
“Prompt2task: Automating UI tasks on smartphones from textual prompts,”
ACM Trans. Comput.-Hum. Interact., 2025.

[31] S. Lee, J. Choi, J. Lee, M. H. Wasi, H. Choi, S. Ko, S. Oh, and I. Shin,
“Mobilegpt: Augmenting llm with human-like app memory for mobile task
automation,” in Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, ser. ACM MobiCom ’24, 2024,
p. 1119–1133.

[32] Y. Liu, P. Li, Z. Wei, C. Xie, X. Hu, X. Xu, S. Zhang, X. Han,
H. Yang, and F. Wu, “InfiGUIAgent: A multimodal generalist GUI
agent with native reasoning and reflection,” 2025. [Online]. Available:
https://arxiv.org/abs/2501.04575

[33] J. Zhang, J. Wu, Y. Teng, M. Liao, N. Xu, X. Xiao, Z. Wei, and
D. Tang, “Android in the zoo: Chain-of-action-thought for GUI agents,”
2024. [Online]. Available: https://arxiv.org/abs/2403.02713

[34] W. Li, W. Bishop, A. Li, C. Rawles, F. Campbell-Ajala, D. Tyamagundlu,
and O. Riva, “On the effects of data scale on ui control agents,” in
Advances in Neural Information Processing Systems, vol. 37, 2024, pp.
92 130–92 154.

[35] “Telegram: A new era of messaging.” https://telegram.org.
[36] “Wechat: Connecting a billion people with calls, chats, and more.” https:

//web.wechat.com.
[37] “Appraven: Apps gone free,” https://appraven.net.
[38] “IPATool-py: Download ipa easily,” https://github.com/NyaMisty/

ipatool-py.
[39] Y. Li, J. He, X. Zhou, Y. Zhang, and J. Baldridge, “Mapping natural

language instructions to mobile UI action sequences,” ACL, 2020.

[40] J.-W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 1078–1089.

[41] S. Sunkara, M. Wang, L. Liu, G. Baechler, Y.-C. Hsiao, Jindong, Chen,
A. Sharma, and J. Stout, “Towards better semantic understanding of
mobile interfaces,” 2022. [Online]. Available: https://arxiv.org/abs/2210.
02663

[42] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” 2020. [Online]. Available:
https://arxiv.org/abs/1905.11946

[43] “PaddleOCR: Awesome multilingual OCR toolkits.” https://github.com/
PaddlePaddle/PaddleOCR.

[44] W. J. Youden, “Index for rating diagnostic tests,” Cancer, vol. 3, no. 1,
pp. 32–35, 1950.

[45] “Frida: A world-class dynamic instrumentation toolkit,” https://frida.re/.
[46] “Appium: Cross-platform automation framework.” https://github.com/

appium/appium.
[47] “ZXtouch: iOS automation framework,” https://github.com/xuan32546/

IOS13-SimulateTouch.
[48] “libimobiledevice: A cross-platform foss library to communicate with

ios devices natively.” https://libimobiledevice.org/.
[49] “Bindiff: Quickly find differences and similarities in disassembled code,”

https://zynamics.com/bindiff.html.
[50] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The Menlo

Report,” IEEE Security & Privacy, vol. 10, no. 2, 2012.

APPENDIX

A. Detection Workflow of CHAMELEOSCAN on the
Vaccination Schedule App

The detection methodology of CHAMELEOSCAN is
examined through a comprehensive case study of the
Vaccination Schedule app (Fig. 1), demonstrating the
system’s standard analytical pipeline.

The process initiates with metadata acquisition (App ID
6747711377), retrieving critical artifacts including app name,
category, BundleID, description, and 112 user reviews (as
shown in §IV-C ➊). Through Transformation Method Inference,
the LLM identifies significant patterns - particularly the recur-
rent token “666” alongside interface cues like “Contact Us”,
“Feedback”, and “Exclamation Mark.” Employing contextual
prompts with established Chameleon exemplars, the system
generates prioritized hypotheses, with the top prediction (H)
proposing a transformation sequence “Open the Contact Us
dialog → input the magic string ‘666’ → submit.” This
hypothesis directs the subsequent interface exploration process,
structured as four distinct detection cycles (Cycles 1-4).

Initial Verification Cycle. Fig. 11 demonstrates the first
validation cycle, initiated through cold launch instrumentation
(➌) that subsequently acquires both visual and structural UI
representations (➌). The Transformation Validation module
(➐) performs initial assessment by contrasting the observed
“Kids List” interface with declared vaccination scheduling
functionality, finding no transformation indicators. Subsequent
UI Comprehension (➍) extracts semantic components including
navigation elements and interactive controls, notably identifying
a prominent chat/feedback icon. Guided by hypothesis H, the
decision engine (➎) prioritizes chat icon interaction as the
most probable verification path, with the Action Execution
module (➏) executing this minimal-cost transition. This cycle
exemplifies the system’s core verification methodology, where
metadata-derived hypotheses direct interface exploration.

17

https://arxiv.org/abs/2501.04575
https://arxiv.org/abs/2403.02713
https://telegram.org
https://web.wechat.com
https://web.wechat.com
https://appraven.net
https://github.com/NyaMisty/ipatool-py
https://github.com/NyaMisty/ipatool-py
https://arxiv.org/abs/2210.02663
https://arxiv.org/abs/2210.02663
https://arxiv.org/abs/1905.11946
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://frida.re/
https://github.com/appium/appium
https://github.com/appium/appium
https://github.com/xuan32546/IOS13-SimulateTouch
https://github.com/xuan32546/IOS13-SimulateTouch
https://libimobiledevice.org/
https://zynamics.com/bindiff.html

Transformation Validation
This is a benign page. The functionality
profile mentions children's vaccinations
and reminder. The runtime behavior
presents a UI with a list of children and
their details, which aligns with the app's
purpose of managing vaccination
information. There is no indication of
unrelated or contradictory functionality.

iOS Agent LLM

View Hierarchy
Screenshot +

Action Sequence

UI Comprehension
The UI displays a header with the title
‘Kids List’ at the top, followed by a list
of children represented as buttons. Each
button contains the child's name and
details. A chat icon is located at the top-
right corner. At the bottom, there are two
tabs for navigation and a floating action
button to add a new child.

Decision Making & Action Seq. Generation
The application was launched from the SpringBoard,
landing on the ‘Kids List’ screen showing a list of
children with options to chat, add a child, or navigate
tabs. This is the first visit to the page. Since the
‘Contact Us’ section isn’t directly visible, further UI
exploration is needed. It is reasoned that tapping the
"ICON_CHAT" button may lead to a chat or contact
section containing the desired feature. The button is
present and accessible, and the action is deemed valid.

Action Execution
Action: Click button (id: 5)
at (780, 152) once.
History: In a ‘Kids List’
screen with options to chat,
add a child, or navigate
between tabs. Tap on the
CHAT button to explore if it
leads to the ‘Contact Us’
section.

App Launch
Step 1

Fig. 11: CHAMELEOSCAN’s detection pipeline on the
Vaccination Schedule app (Cycle 1).

Secondary Verification Cycle. Fig. 12 depicts the subsequent
cycle following chat icon activation. The appearing modal
dialog undergoes rigorous validation, confirming absence
of transformation indicators as the “Kids List” background
interface maintains functional consistency with the declared
vaccination scheduling purpose. Then the UI Comprehension
module precisely identifies interactive components including the
text input field and submission controls. The decision engine,
constrained by H’s requirements, generates a precise two-action
sequence: text input followed by submission. This conservative
approach exemplifies the system’s task-first interaction princi-
ple, prioritizing hypothesis validation over exploratory actions
that might obscure transformation detection.

Transformation Validation
This is a benign page. The functionality
profile mentions providing children's
vaccination schedules and reminders. The
runtime behavior presents a UI with a
child list and a contact form, which
aligns with the app's purpose of
managing vaccination information and
providing user support. There is no
evidence of contradictory functionality.

iOS Agent LLM

View Hierarchy
Screenshot +

Action Sequence

UI Comprehension

The UI displays a list of children at the
top, followed by a modal form for
submitting feedback or suggestions. The
form includes a label, an input field, and
two buttons for canceling or submitting.

Decision Making & Action Seq. Generation
The application was launched and navigated to a new
page titled ‘Contact Us’, which contains a contact
form with an input field and buttons labeled ‘Cancel’
and ‘Submit’. This is the first visit to the page. Since
the task requires entering ‘666’ in the contact section,
the input field is used to type ‘666’, followed by
clicking the ‘Submit’ button to submit the form. Both
elements are visible and ready for interaction, making
the actions valid and aligned with the task goal.

Action Execution
Action:  Input ‘666’ into
field (id: 6);  Click button
(id: 8) at (524, 1062) once.
History: In a contact form
titled ‘Contact Us’ with an
input field for feedback and
buttons for ‘Cancel’ and
‘Submit’. Input ‘666’ into the
text field and click the
‘Submit’ button to submit the
form.





Step 2

Fig. 12: CHAMELEOSCAN’s detection pipeline on the
Vaccination Schedule app (Cycle 2).

Third Verification Cycle. Following dialog submission
(Fig. 13), the interface exhibits transient instability before
displaying a full-screen ad. The Transformation Validation
module classifies this as non-indicative noise, while UI Compre-
hension accurately detects both the ad frame and its dismissal
control (“X”). Applying predefined recovery protocols, the
system executes minimal intervention - a single tap on the close
button - to restore analyzable interface states, demonstrating
its resilience against transient obstructions.

Final Verification Cycle. Post-ad dismissal (Fig. 14), the
revealed interface demonstrates fundamental domain diver-
gence: vaccination-related elements are entirely replaced by

Transformation Validation
This is a neutral page. The runtime
behavior shows a pop-up ad that fully
obscures the underlying content. The
elements of this pop-up, an
‘Announcement’ text do not conflict with
the app's declared purpose. This behavior
does not provide decisive evidence of
illicit activity.

iOS Agent LLM

View Hierarchy
Screenshot +

Action Sequence

UI Comprehension
The UI displays an advertisement overlay
in the center of the screen, featuring a
product image and descriptive text. The
advertisement includes a feedback button,
a close button, and a call-to-action button
at the bottom.

Decision Making & Action Seq. Generation
After completing the input of ‘666’ and submitting
the contact form, the application encountered
instability, leading to multiple restarts due to crashes
or unresponsiveness. Upon relaunch, a new
advertisement overlay appeared for the first time.
Since this overlay blocks access to the main UI, it
must be dismissed to continue. The close button,
which is visible and designed for this purpose, is
clicked to remove the advertisement and proceed
with the task flow.

Action Execution
Action: Click button (id: 6)
at (740, 319) once.
History: In an advertisement
overlay with options to close,
provide feedback, or view
more details. Click the close
button to dismiss the
advertisement and proceed to
the main UI.

Step 3

Fig. 13: CHAMELEOSCAN’s detection pipeline on the
Vaccination Schedule app (Cycle 3).

media streaming components. Through comprehensive semantic
alignment analysis, the Transformation Validation module quan-
tifies significant functional disparity, conclusively identifying
Chameleon behavior. This final assessment completes the
detection cycle, with the system terminating upon definitive
classification.

Transformation Validation
This is an illicit page. The functionality
profile indicates that the app is a tool for
managing and understanding children's
vaccination schedules. However, the
runtime UI and texts clearly show
content related to movies, TV shows, and
other entertainment media. The presence
of these decisive evidence confirms the
contradiction.

iOS Agent LLM

View Hierarchy
Screenshot +

UI Comprehension
The UI consists of a search bar at the top
with a placeholder text and icons for
search and history. Below it, there are
navigation tabs for different content
categories. A banner image occupies the
central area, followed by a section
showcasing recommended content. At the
bottom, there are navigation buttons for
the homepage, rankings, and user profile.

Decision Making & Action Seq. Generation

Skip.

Action Execution

Skip.

Chameleon
App

Detected!

Step 4

Fig. 14: CHAMELEOSCAN’s detection pipeline on the
Vaccination Schedule app (Cycle 4).

Summary. CHAMELEOSCAN demonstrates a logically co-
herent workflow from metadata analysis to final classification.
Initial pattern analysis generates hypothesis H through few-
shot learning, establishing an optimized verification path.
Subsequent interface exploration proceeds through methodical
validation cycles: targeted navigation to potential transformation
points (Cycle 1), precise execution of predicted activation
sequences (Cycle 2), resilient handling of interface obstructions
(Cycle 3), and conclusive semantic divergence assessment
(Cycle 4).

This architecture exemplifies CHAMELEOSCAN’s core inno-
vation - synergistic integration of predictive metadata analysis,
semantic interface understanding, and human-comparable inter-
action strategies. Each module maintains both local justifiability
(via immediate observational evidence) and global consistency
(with overarching detection objectives), resulting in a robust,
interpretable verification framework for Chameleon apps.

18

APPENDIX A
ARTIFACT APPENDIX

This appendix describes the artifact associated with this
paper.

A. Description & Requirements

The artifact implements CHAMELEOSCAN, a framework for
automated detection of iOS Chameleon Apps through LLM-
powered semantic UI analysis and dynamic interaction. The
system (i) operates real iOS apps on a jailbroken device, (ii)
collects screenshots and runtime behavioral data, and (iii) em-
ploys LLMs to intelligently execute tasks (i.e., transformation
methods) and determine whether an app exhibits “chameleon”
behavior (i.e., concealed or prohibited features not disclosed
during normal onboarding). The artifact includes all necessary
software components to deploy the framework: complete source
code, README documentation, automation scripts, trained
models, and configuration files.

1) How to access: The full artifact—including source code
(with README and LICENSE), trained models, datasets,
cached examples, and this appendix—will be archived as a
static package on Zenodo (DOI: 10.5281/zenodo.17540091).
A GitHub mirror is also provided for convenient access:
https://github.com/ChameleoScan.

2) Hardware dependencies: The experimental results re-
ported in the paper were obtained in the environment described
below. Reproducing the framework requires a comparable setup.
(Note that simply running the framework to inspect cached
results does not require physical device interaction.)

• A jailbroken iPhone device running iOS 14.x
• A macOS computer for building WebAgentDriver
• A Windows PC (recommended) for executing the frame-

work
3) Software dependencies: The artifact requires both iPhone-

side and Host PC-side software environments:
iPhone environment
• Jailbroken iOS device with Cydia and AppSync (for

installing decrypted IPA files)
• OpenSSH, Frida, AFC2 and ZXTouch (formerly IOS13-

SimulateTouch) tweaks installed.
• WebAgentDriver deployed as an Appium XCUITest Driver

on the device.
Host PC environment (tested on Windows 10/11)
• Runtime: Python 3.11+ and Node.js 22+
• iTunes or Apple Mobile Device Service (for device

connection)
• A valid OpenAI API key for GPT-4o access
The iPhone must be connected to the macOS PC during

WebAgentDriver compilation, and to the host PC during
framework execution.

4) Benchmarks:
• Transformation methods and metadata for 500 known

Chameleon apps (dataset/Dataset_Known.csv)
• 234 Chameleon apps and 1,644 unknown iOS apps used

for evaluation (Due to storage limitations, not all IPA files

are included. A subset of IPAs and complete metadata
for the unknown dataset are provided in dataset/IPA
and dataset/Dataset_Unknown.csv, respectively.
Additional decrypted IPA files are available upon request.)

• Full source code of the framework (framework/code)
• A pre-trained EfficientNet-B0 model

on the RICO-Semantics dataset
(dataset/model/best_model.pth)

• Cached examples of Chameleon app detection processes
(framework/code/cached)

B. Artifact Installation & Configuration

The following steps verify that the archive is complete and
interpretable. These do not involve physical device operation.

• Unpack the archive.
• Create a Python 3.11 virtual environment and install

packages from requirements.txt.
• Run python benchmarking.py, which loads data from
cached folder.

• In the benchmarking UI, open each provided app to
inspect:
– The screenshots and view hierarchies captured
– Per-screen and per-step analysis generated by LLM
– Task plans and each action performed
– App metadata and review summaries (in JSON format)

This procedure confirms: (i) the types of data collected by
the framework; (ii) the framework’s reasoning process; and (iii)
the rationale behind benign versus chameleon classifications.
No additional setup is required for this validation.

Readers wishing to conduct live experiments with our
benchmarks may follow the procedure below (detailed in
framework/code/README.md):

[backgroundcolor=gray!10, linecolor=gray!50,
roundcorner=4pt] iPhone device setup

1. Install Cydia and AppSync, or sign in with an Apple ID.
2. Install OpenSSH, Frida and ZXTouch tweak.
3. Build and deploy WebAgentDriver.
4. Connect the device to the host PC.

Host PC setup (Windows as example)
1. Install Python 3.11+ and Node.js 22+.
2. Install iTunes or Apple Mobile Device Service.
3. Set up a Python Virtual Environment and install

requirements.txt.
4. Set up Appium by installing dependencies listed in

package.json.
5. Resolve any tidevice XCUITest startup issues if encoun-

tered.
6. Update the default bundle ID in xcuitest.bat to

match your deployed instance.
7. In app.py, set DEVICE_VERSION, DEVICE_UDID

(and optionally STATUS_BAR_PIXELS for status bar height)
to match your device.

8. Replace YOUR_API_KEY_HERE in gpt_cls.py with
your valid OpenAI API key.

9. Train an EfficientNet-B0 model on the rico-semantics
dataset, and save it as best_model.pth.

19

https://github.com/ChameleoScan

Running the framework
1. Put your IPA file, app store metadata and user reviews

into the cached directory (see examples).
2. Add target Bundle IDs to BATCH_TASKS.txt.
3. Run the batch files appium.bat, tiproxy.bat, and

xcuitest.bat, or manually launch these services.
4. Run app.py to begin testing.
5. Execute benchmarking.py at any time to review

results.

C. Experiment Workflow

For readers conducting live experiments, CHAMELEOSCAN
automatically executes the following workflow to detect and
analyze potential Chameleon behaviors:

1) App Setup and Metadata Analysis. The system installs
the target app on an instrumented iOS device, analyzes its
metadata, and uses LLMs to construct a functional profile
of the app.

2) Transformation Method Prediction. Using few-shot
prompts constructed from known Chameleon exemplars,
the framework infers possible transformation methods for
experimental validation.

3) Dynamic Execution. The agent sequentially executes
each predicted method. Throughout execution, the system
records screenshots, view hierarchies, UI element recogni-
tion outputs, performed actions, and Chameleon validation
outcomes for every UI state.

4) Result Output. The process concludes when a detection
condition is satisfied (e.g., positive classification or reach-
ing the execution round limit). The framework outputs the
final Chameleon detection decision alongside supporting
evidence.

This workflow generates a structured detection record for
each analyzed app, comprising the predicted transformation
methods, intermediate UI comprehension results, executed
actions, and the final classification.

20

	Introduction
	Background and Related Work
	Chameleon Apps
	Illicit iOS App Analysis
	Mobile Task Automation

	Preliminary Study
	Data Collection of Chameleon Apps
	Characterizing Chameleon Apps
	Transformation Methods
	Disclosure of Transformation Methods
	Functionalities Before and After Transformation
	Summary

	ChameleoScan Approach
	Threat Model
	Requirements and Challenges of Automated UI Testing of Chameleon Apps
	ChameleoScan Design

	Evaluation
	Experiment Setup
	RQ1: Performance on KNOWN Dataset
	RQ2: Task-wise Performance
	RQ3: Performance on UNKNOWN Dataset
	Detection Performance Without User Reviews
	ChameleoScan vs. Chameleon-Hunter & Mask-Catcher

	Discussion
	Conclusion
	Ethical Considerations
	References
	Appendix
	Detection Workflow of ChameleoScan on the Vaccination Schedule App
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow

