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ABSTRACT
DNS cache plays a critical role in domain name resolution, pro-
viding (1) high scalability at Root and Top-level-domain (TLD)
name servers with reduced workloads and (2) low response latency
to clients when the resource records of the queried domains are
cached. However, the pervasive misuses of domain names, e.g.,
the domains of “one-time-use” pattern, have a negative impact on
the effectiveness of DNS caching because the cache has been filled
with entries that are highly unlikely to be retrieved. In this paper,
we investigate such misuse and identify domain name-based fea-
tures to characterize those one-time domains. By leveraging the
features that are explicitly available from the domain name itself,
we build a classifier to combine these features, propose simple pol-
icy modifications on caching resolvers for improving DNS cache
performance, and validate their efficacy using real traces.

CCS Concepts
•Networks ! Network measurement; Network protocols;

1. INTRODUCTION
As one of the most important components of the Internet, the Do-

main Name System (DNS) provides vital mapping service for Inter-
net users by translating domain names to IP addresses. Since DNS
is a globally distributed database system, caching has been widely
adopted in DNS infrastructures, where the acquired mapping re-
sults (i.e., the DNS resource records, RRs) will be cached locally
to answer the following queries in a specific duration. DNS cache
significantly reduces the resolution traffic along referral chains to
interact with multiple name servers, resulting in a much shorter
client-perceived delay and high scalability of DNS.

Due to its fundamental role for accessing Internet services, DNS
traffic is the least blocked [21], and provides both attackers and de-
velopers with an attractive channel to transmit information. Thus,
the misuse of domain names (either malicious or non-malicious)
is widely observed on the Internet. On the other hand, since the
cached objects in DNS resolvers are typically small, in some in-
stances caches are not size-limited [17] and memory usage is rel-
atively stable as the expired entries are being evicted. However,
when serving a large group of users with a heavy load (e.g., in ISP
or CDN/cloud providers), although modern DNS resolvers manage
the memory well, they will still quickly consume the memory bytes
and go into swap. Meanwhile, this may also cause performance
problems on CPU if cleaning-interval is enabled to periodically
check the stale records. To this effect, a fixed memory allocation is
a common configuration [12], and the typical replacement policies
(e.g., LRU and LFU) are employed to manage the cache usage [13,
14]. Therefore, it is critical to ensure that the cached RRs would
be likely to be accessed again. Unfortunately, the pervasiveness

of misused domains, e.g., disposable domains [12], causes the in-
effectiveness of caching on resolvers since the cache is filled by
records with very low or almost zero cache hit rates.

In this paper, we attempt to mitigate the negative effect on DNS
caching caused by the domain name misuses, especially the “one-
time-use” domains. Different from previous approaches, we do not
pursue an accurate detection of domain misuses by employing the
deep inspection techniques, such as behavioral features [10], al-
phanumeric characters-based metric [26], or entropy-based com-
puting [21]. Instead, our key insight is that since most misused
domains, either malicious or benign, tend to transmit information
over DNS query names, the domain name itself may have distinct
features that are explicitly available from individual queries and can
be readily exploited for improving DNS cache performance.

Based on DNS trace logs captured in the resolvers of campus net-
works, we extract the re-used and once-used RRs. The reused RRs
indicate that the queried domains are retrieved for multiple times,
and the once-used RRs only appeared once in one trace. By ana-
lyzing a large amount of once-used entries, we observe that several
explicit domain name-based features are capable of characterizing
the reusability of domains. As such, we propose modified caching
behavior to enhance the effectiveness of DNS caching by prelimi-
narily excluding unreusable RRs. In order to validate their capabil-
ity, we quantify the statistical properties of each feature and build
a classifier that combines those features. The classification results
demonstrate that the proposed modifications are able to prevent ap-
proximately 85% of once-used RRs from being cached while only
less than 1% of reusable RRs are mistakenly kept out of the cache.

The remainder of this paper is organized as follows. We intro-
duce the background of DNS caching and disposable domains in
§2. We present the proposed domain name-based features on DNS
caching in §3. We analyze collected datasets and build a classifier
to validate the features in §4, and conduct a trace-driven evaluation
in §5. We survey related work in §6 and conclude the paper in §7.

2. BACKGROUND
2.1 DNS Caching

Recursive DNS resolvers retrieve the name resolution results for
clients and cache the received responses to answer the following
queries. The duration that the cached records would be valid is
specified by a time-to-live (TTL) value.

In standard TTL-based caching, the TTL value is set and handed
out by the administrator of authoritative DNS record, and the cached
entries are expunged after their TTLs expire. The duration for
caching a negative response (e.g., NXDOMAIN, NODATA, etc.) is
given by the TTL value of SOA record [4]. While TTL-aging-based
behavior is legible, the violation of TTL is observed pervasively
both in modern web browsers and DNS infrastructures [11]. For
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instance, many browsers and resolvers assign a minimum amount
of seconds for holding an RR, and many resolvers trim the large
TTL values to a default maximum value.

2.2 Disposable Domains
The use of DNS in various ways for which it was not originally

designed has been observed for many years. For example, DNS is
exploited as an effective covert channel for surreptitious commu-
nications [21, 25]. Moreover, Chen et al. [12] studied disposable
domains, a more generic class of domain misuse where the query
names are adopted to convey the “one-time signals.” These do-
mains are not necessarily malicious and are observed pervasively
from various types of service providers, including popular search
engines, social networks, CDNs, and security companies, and have
being increased to a significant portion of queried domains on the
Internet. Due to the “one-time-use” pattern and the increasing use
of such domains, the DNS cache would be filled with entries with
near-zero hit rates. Our work is mainly built on the analysis of
these entries for disposable domains.

3. DOMAIN NAME-BASED FEATURES
Domain names are human-readable and easy-to-remember char-

acter sets. However, the once-used domains exploit the query names
as a communication channel. One of our insights is that such mis-
used domains are encoded automatically to convey formatted in-
formation and should have significantly different patterns on their
domain names.

Therefore, we consider the possibility of characterizing the once-
used domains, and then exploit the derived features to filter out the
disposable domains. The removal of such once-used domains from
the DNS cache will improve its performance because the pervasive
use of misused domains causes the DNS cache to be occupied by
those entries that are highly unlikely to be reused. Figure 1 presents
the preliminary examples that motivate our feature selection. We
simply plot the distributions of the query name length and the sub-
domain depth (i.e., the number of subdomains), respectively, for all
observed query names and distinct domain names from one of our
trace logs (§4.1). It is evident that (1) most repeatedly appeared
domains have a short name and limited subdomain depth, and (2) a
significant portion of domains have a long query name and a large
number of subdomains. This implies that, under a limited mem-
ory space, discarding those entries with long names or deep subdo-
mains would save more space in the cache to store the entries with
a higher possibility of being reused, and thus effectively improving
the caching effectiveness.

Based on the analysis of large amounts of once-used domains,
we identified that the domain name-based features, such as the two
features above, are able to characterize the caching behavior of do-
mains without the help of sophisticated features used in the de-
tection of malicious domains (e.g., the behavioral features in EX-
POSURE [10] and statistical features in Notos [6]). As a result,
we propose the following features and explain why they may af-
fect caching effectiveness. All but the first one have not yet been
characterized in the analysis of DNS, and none of them have been
studied in the context of caching performance.

• F1: Length of query name: Since most of the once-used
domains tend to send messages over DNS queries, those do-
mains naturally have (much) longer query names to pack as
much information as possible and are hardly reusable.

• F2: Length of the longest subdomain name: Similar to the
query name, the individual lower-level name (i.e., the string
representing a subdomain) could also be larger than a legiti-
mate subdomain name that tends to be “easy-to-remember.”
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Figure 1: Example of distribution for lengths and depths.

• F3-a: Subdomain depth: To report information over DNS,
the implications of the domain names must be easily recog-
nized by the receivers. In doing so, the domain separator,
i.e., the period “.”, would naturally be employed to format
the domains to give the name strings meaningful informa-
tion, resulting in a deep subdomain level, i.e., a large number
of subdomains in one query name.

• F3-b: Number of format fields: Like the period specifying
the subdomain level, we also observed that the hyphen “-”
is widely used as field separator to format messages in one
subdomain name.

Due to the function similarity, in this paper we treat both periods
(F3-a) and hyphens (F3-b) as equal format separators and em-
ploy the same term, “number of format fields” (F3), to represent
the number of strings separated by either “.” or “-”.

• F4: Number of fields with unusual lengths: To represent
various pre-defined types of information inserted in speci-
fied positions, the length of format strings would vary widely,
and many fields would be either unusually long or unusually
short. We consider such domains quite hard to reuse. Thus,
we define a metric of the sum of the number of long-format-
fields (L-FF) and short-format-fields (S-FF) within one query
name to identify such a feature.

Figure 2 shows the sample of domains with the explicit features.
Note that these features, e.g., the length of query names, do not
necessarily indicate malicious purposes [21]; in fact, most of them
are benign. However, they indeed indicate the usage of “signaling”
and thus imply the high possibility of a “one-time-use” pattern. Ac-
cordingly, there would be a strong correlation between each feature
and once-used RRs in the cache. By exploiting these features, we
can revise the caching policies to proactively prevent those RRs
that are less likely to be reused from being cached, such that the
effectiveness of DNS caching could be significantly improved.

Methodology. For the proposed features, we characterize the
properties of re-used and once-used domains, train a classifier to
classify the entries, and conduct a trace-driven simulation to vali-
date their efficacy in caching. In the feature validation (§4.2) and
classification (§4.3), the analysis simply relies on domain names
and assumes implicitly that both the cache size and TTL values are
unlimited. This assumption simply creates an ideal scenario for
caching RRs, and cache hits are not limited by the cache size and
TTL values. The simulation (§5.2) runs within a resolver program
that caches the entries according to the classification results and
common practices on modern DNS resolvers.

4. MEASUREMENT ANALYSIS

4.1 Dataset
The datasets used in the study are the trace logs of outgoing DNS

queries captured at local DNS servers at the College of William and
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Figure 2: Sample of domains with the domain name-based features.

Table 1: Summary of datasets
Dataset Dates Size (per day) Features† # Records # Distinct name # Re-used # Once-used
WM 6/25/2015 - 7/8/2015 1.1 - 2.3GB N, S, K, T 192,251,799 4,470,732 619,045 3,851,687
UD 12/8/2015 - 12/23/2015 2.4 - 3.9GB S‡,, T 1,011,877,341 13,179,395 2,852,021 10,327,374

† Features: Query Name (N), Structure of Domain Name (S), Query Type (K), and Query Timestamp (T)
‡ In UD dataset, the actual query names are anonymized but remain distinguishable to identify reappearance. Meanwhile, the structure of
domains is given by the length of each format field (e.g., a.b.c-d-e.f.g, where each letter represents the length of each field).

Mary (WM) and the University of Delaware (UD) over a period of
two weeks. We summarize the datasets in Table 1.

The trace logs from campus vantage points have two limitations.
First, the traces may not reflect the dynamics of domain names
observed at ISP’s DNS servers. However, due to similar patterns
of disposable domains from a large-scale ISP dataset reported in
[12], we believe that the proposed policies would also be effec-
tive in ISP’s DNS cache, especially due to the heavy load on their
resolvers. Also, we removed the RR entries that retrieve local do-
mains. Second, the length of our trace logs is limited. We believe,
however, they are still capable of demonstrating the typical cache
usage patterns of local resolvers because the origin TTL values of
A/AAAA records are typically shorter than one day [15].

4.2 Feature Validation
Given the heuristics presented in §3, we validate our speculation

that these explicit domain name-based features will help to improve
the effectiveness of DNS caching. From Table 1, we can see that
86.15% and 78.63% of queried domains appeared only once in each
dataset, which is similar to the results of identified disposable do-
mains [12]. In our study, however, we do not attempt to achieve
high detection accuracy in identifying such a class of domains. In-
stead, we focus on exploring the efficacy of proposed features on
improving the overall cache performance by avoiding a large num-
ber of once-used records being filled in the cache.

To validate each proposed feature based on its factual caching
effect, we tentatively derive a threshold to measure the fractions of
excluded domains. We then leverage a learning module to train our
datasets and build a classifier that combines the proposed features.
F1: Length of Query Name. Figure 3(a) shows the distributions

of the query name length in which the two classes of domains are
clearly distinguishable from one another. The majority of once-
used domains apparently have much longer name lengths than re-
used domains.

To exclude the useless RRs, we start to consider a tentative thresh-
old at 50 bytes of query name length. In the WM dataset, a thresh-
old of 50 bytes would exclude 81.10% of once-used domains and
1.61% of re-used domain, resulting in 69.87% of overall entries
being rejected from the cache. By gradually raising the threshold,
at the length of 100 bytes we observe that 0.027% of reusable do-
mains are mistakenly dropped while 44.99% of once-used domains
(38.77% of RRs in total) are discarded. Similarly in the UD set,
with the length of 100 bytes, 0.019% of re-used entries are mis-

takenly kept out of the cache while 32.58% of once-used domains
(25.53% of RRs in total) are dropped. Such results indicate that
rejecting domains with large names would significantly reduce the
waste of cache space but keep the cache hit ratio at the same level.
F2: Length of the Longest Subdomain Name. Figure 3(b)

demonstrates that the large strings are widely adopted in once-used
domains. Specifically, with each dataset, we identify 3.03% and
1.51% of re-used entries, as well as 73.40% and 68.05% of once-
used entries, include one subdomain with the length of more than
20 bytes, respectively. If we increase the threshold to 30 bytes,
the fractions of re-used domains will decline to 0.39% and 0.30%
while the fractions of once-used domains remain at 69.86% and
57.22%, respectively. Thus, a subdomain name length greater than
30 bytes would strongly indicate that the domain is once-used, with
little chance of being a useful entry if cached.
F3: Number of Format Fields. Figure 3(c) presents the dis-

tribution of the total number of format fields. It is easy to identify
that a threshold of 10 is capable of distinguishing the reusability for
each class of domains. Using this threshold, we can exclude 0.59%
and 0.79% of re-used entries, and 31.17% and 42.39% of once-used
domains, respectively, from each dataset; overall, around 25% and
37% of entries would be discarded from the cache, respectively.
F4: Total number of L-FF and S-FF. In order to profile the

total number of the long-format-fields (L-FF) and the short-format-
fields (S-FF), we first empirically determine the specific values of
the length to define the L-FF and S-FF. Since most of TLDs include
one or two fields with two or three characters, we define the S-
FF as the fields with characters less than or equal to three.1 Also,
we investigate the distributions of F4 by varying the length of L-
FF, and observe that a length of 10 is sufficient to demonstrate the
distinct statistical properties for this feature.

Figure 3(d) shows the distribution of the sum of L-FF (>10
bytes) and S-FF (63 bytes). With a clear threshold observed at
five, we identify that 0.61% of re-used and 70.03% of once-used
domains in WM’s dataset (60.33% of RRs in total), and 0.40% of re-
used and 74.55% of once-used domains in UD’s dataset (63.97% of
RRs in total), would be discarded. As a result, this would exclude

1A more accurate approach may need to exclude the TLDs (e.g., .com and
.co.uk) and SLDs (second-level domains, such as msn and cnn) since
they may be regarded as the S-FF. However, we observe that checking the
entire domain names has already produced effective results, so we decide to
use a simple way to avoid introducing additional steps to identify the SLDs.
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Figure 3: Distribution of domain name-based features for re-used and once-used domains.

Table 2: Percentage of mis-classified instances
Decision Tree Random Forest (ntree=5)

D R O D R O

WM 16.07% 0.26% 13.88% 12.93% 0.19% 11.16%
UD 13.91% 0.98% 14.13% 11.89% 0.34% 12.18%

D: Disposable, R: Re-used, O: Overall

the majority of the useless entries but have little negative impact on
caching reusable domains.

4.3 The Classifier
To validate the efficacy of the combination of proposed features,

we train the datasets with both decision tree and random forest
models [5] by using the rpart and randomForest packages in
R, respectively. Note that we leveraged the class-weights (i.e., the
parms parameter in rpart and the classwt parameter in random-
Forest) to handle unbalanced class sizes in our datasets.

Ground truth. Since it is (almost) impossible to have a ground
truth that identifies the “disposable domains,” we label the once-
appeared domains extracted from the datasets as disposable do-
mains. As such, our labels correspond to those assigned by an
oracle with perfect knowledge. Although the domain unpopularity
may cause mis-labeling (i.e., some unpopular domains may be mis-
labeled as disposable), our labels are the acceptable approximation
to the ground truth in practice, especially given more than thou-
sands of users from each campus network. Moreover, mis-labelling
a rarely re-used domain as disposable would have a marginal im-
pact on practical caching performance, being it likely to be evicted
before reappearing.

Evaluation of the classifiers. Each dataset is divided into mu-
tually exclusive training and testing partitions, where 66% of the
dataset is used for training and the rest is used for testing. With
the random forest model, we observe that the benefit cannot be
achieved with the number of constructed trees higher than five. Ta-
ble 2 lists the percentage of incorrectly classified instances using
the combination of all features.2 Note that we aim to improve the
caching effectiveness in two folds: (1) effectively reject the use-
less entries, and (2) minimize the negative impact on the reusable
ones. The results in Table 2 demonstrate that we can achieve both
2We explored different combinations of feature sets and found that using
all features in the classification can achieve the minimum error rate.
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Figure 4: Training Results (with Decision Tree).

goals in the classification processes. They also indicate that, al-
though a simple decision tree tends to overfit the training set, it is
capable of producing accurate results when applied to the classifier
constructed by the combination of proposed features. More specif-
ically, 85% to 88% of once-used RRs are correctly labeled and ex-
pelled from the cache, while only 0.2% to 1% of re-used RRs are
incorrectly classified in the WM and UD datasets, respectively.

The unbalanced (but expected and positive) results can be inter-
preted by the observation that the re-used entries have more consis-
tent and concentrated distributions of features, while the extracted
features from once-used entries exhibit more diffused distributions.

Figure 4 shows the index of variable importance and the primary
split values in the decision tree training for each dataset, which il-
lustrates that (1) all the features play important roles in the classifi-
cation (the importance index varies from 21 to 31), and (2) although
the primary split values are more aggressive than the thresholds de-
rived from any single feature (§4.2), we can further lower error
rates by using the combination of features.

5. TRACE-DRIVEN SIMULATION
In §4, we demonstrate that the explicit domain name-based fea-

tures are useful to infer the reusability of RRs. However, in prac-
tice, the resolvers behave slightly differently due to the presence
of TTLs. The re-used entries may still cause cache misses as the
cached RRs are expired. Meanwhile, some mis-classified reusable
entries may not affect the caching performance since many of them
have a lower possibility to be retrieved again within the duration of
TTL. In this section, we apply the classifier in §4.3 with the com-
bination of proposed features to conduct a trace-based simulation3

to evaluate the effectiveness of proposed policies.
3We only perform the simulation with WM’s trace since the actual domains
have been anonymized in UD’s trace.
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Table 3: Summary of RR Types (%)
A AAAA TXT PTR SRV SOA NS other†

70.80 15.33 5.09 3.96 3.86 0.83 0.08 0.06
† MX, ANY, NAPTR, DS, DNSKEY, CNAME, AFSDB, and AFXR

5.1 Implementation
We implemented the proposed caching policies in a simulated re-

solver program modified from djbdns [2], in which the decisions
employ the classification results from §4.3. Our resolver program
follows the standard TTL model, i.e., do not assign a default min-
imum TTL value. The duration of negative caching is subject to
the TTL values of SOA records [4]. Moreover, we do not set the
cleaning-interval to periodically expel the stale records due to the
use of sophisticated memory management in modern resolvers [3].
Only when hitting the cache limit will some entries be prematurely
evicted from the cache (e.g., using LRU replacement policy).

Types of RRs. First we study the caching properties of differ-
ent types of RRs. In particular, we examine whether they need to
be given discriminative considerations when caching in resolvers.
Table 3 lists the breakdown of the types of queries. The SOAs are
treated the same as A/AAAAs, i.e., caching such RRs according to
the proposed policies in §4. Other unspecified types of RRs are not
particularly studied because of their small amounts of queries.

• TXT records: We identify that only 0.01% of TXT records
have been reused, and indeed observe that the TXTs are be-
ing used as an information channel. We observed similar
distributions of proposed features in TXTs and thus use the
proposed policies for caching TXTs.

• Reverse lookup queries (PTRs): We do not apply the mod-
ifications on PTRs since it is rarely misused, and we do not
observe the studied features taking effect on PTRs.

• Service records (SRVs): We identify that most SRVs (97.46%)
are involved with local queries that have been removed in
our study (§4.1). Like PTRs, we also observe that the stud-
ied features have no impact on SRVs’ caching effectiveness
either, and thus we will not apply the polices on SRVs.

• NS records: Caching NS records can significantly enhance
the efficiency of DNS and reduce the load on name severs
[17]. Also, the number of NS records is much smaller than
the other types of RRs above. Thus, there is no need to apply
the policies on NS records. In fact, no NS records would be
excluded from caching if the proposed policies were applied.

5.2 Results
We now evaluate the effectiveness of the proposed policies given

a fixed cache memory allocation. To simplify the assessment, we
define the cache allocation by the number of RRs. We input the
RRs to a cache file and then examine the cache hit rate, which is
calculated as the ratio between the number of cache hits and the
total number of retrieved RRs.

We need to determine how many RRs should be cached to rep-
resent a real scenario for the evaluation of our proposed policies.
Jung et al. [17] identified that the DNS cache hit ratio is between
80% and 87%. Thus, we choose our cache size as the number of
cached RRs that can achieve a similar cache hit ratio. To this end,
given the moderate size of our dataset and an FIFO replacement
policy, i.e., simply remove the oldest entry when the cache runs out
of space, we observe that a size of 100,000 entries would have a
cache hit rate of about 86%. Therefore, we set the cache size to
100,000 RRs in our simulations. Note that this setting is derived
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Figure 5: Distribution of cache hit rates. The X-axis represents
the number of entries read into the resolver.

from local campus networks, and in ISPs’ DNS servers, a larger
cache size is needed to handle the larger number of DNS queries.

FIFO. We first evaluate proposed policies with the FIFO caching
scheme, which is still widely used in popular DNS resolvers such as
djbdns [2]. Figure 5(a) presents the measured cache hit rates un-
der the FIFO, with and without proposed polices, respectively. We
observe that the modified caching policies can improve the cache
hit rate by about 8% with a cache size of 100,000 entries.

Pseudo-LRU. We then evaluate the proposed policies with a
simplified pseudo-LRU that leverages one bit to store the cache
status for each entry (i.e., the MRU-bit). When a cache hit occurs
for an entry, its cache bit is set to 1. When the cache is full, the
oldest entry with the cache bit 0 is evicted. When the cache bits of
all cached entries have been set to 1, all the bits are cleaned to 0
except for the last one. Figure 5(b) shows the measured cache hit
rates with the LRU replacement scheme. We observe that the pro-
posed caching modifications improve the cache hit rate by about
7%. Compared with FIFO, LRU without our policies can increase
the cache hit rate by about 2%. With the proposed modifications,
both FIFO and LRU can increase the cache hit rate to 92% - 93%.

5.3 Discussion
TTL values. The lower TTL values have been observed in both
malicious domains [10] and disposable domains [12]. However,
the domain owners are free to set the TTLs and have been switch-
ing to larger TTL values (most of them have a TTL of 300s [12]),
resulting in a larger duration of the useless entries being regarded as
valid in the cache. Meanwhile, since modern resolvers have made
the cleaning-interval obsolete [3], caching the once-used domains
even for a short time still degrades the performance. This is because
the cache is filled with such useless entries, and no space is left for
caching useful ones. Thus, TTL may not be a reliable indicator of
the caching effectiveness, and we do not consider it to be a metric
to quantify the caching behavior.
Counteraction. One may be concerned that the domain owners
could circumvent our polices by changing the structure of domain
names. However, we believe the modifications will not provoke
them to seek more sophisticated approaches since those “one-time
use” domains have accomplished the communication mission, and
the developers using such approaches would not care if their DNS
responses are cached.

6. RELATED WORK
DNS Caching and TTL characterization. Pang et al. [20] pre-
sented a comprehensive study on DNS, and [19] observed that a
significant fraction of web clients and LDNSes do not honor DNS
TTLs. Callahan et al. [11] passively monitored DNS traffic within
a residential network to profile the modern DNS behaviors and
properties. They also observed that web browsers do not adhere to
the given TTLs, and CDNs tend to shape traffic with shorter TTLs.
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Jung et al. [17] presented a detailed analysis on DNS traces to
evaluate the client-perceived performance and the effectiveness of
DNS caching. They [18] then presented an analytic method of
modeling the cache hit rate given consistent TTLs. Choungmo-
Fofack et al. [14] studied the DNS cache hierarchy in which the
TTLs are overridden by the local values.
Cache modifications. Shang et al. [23] proposed an approach
to improve the DNS caching by letting the ADNS’s response pig-
gyback extra resolution results for future queries predicted by site
usage and DNS history. Cohen et al. [13] studied the proactive
renewal policies in LDNSes, where the expired records are reused
to answer the queries and are validated with a concurrent query.
Similarly, Ballani et al. [9] proposed a minor change in caching
behavior of DNS resolvers to mitigate the DNS DoS attacks, where
the expired records are stored in a separate “stale cache” and reused
to answer the queries unresponded by the authoritative servers.
Malicious domain detection. There have been studies to under-
stand and detect the malicious domains. Hao et al. [16] examined
the features that may indicate malicious purposes of a domain dur-
ing its registration. Antonakakis et al. [7, 8] and Yadav et al. [26]
proposed methods to detect dynamically generated malicious do-
mains in DNS traffic.

Bilge et al. [10] built a passive analysis system extracting 15
features to detect malicious domains. Similar to our work, two
of the features are domain name-based: (1) the percentage of nu-
merical characters and (2) the ratio of the length of LMS (longest-
meaningful substring) to the total length of a second-level domain.
The most salient difference is that our work studies caching behav-
iors, regardless of whether a domain is malicious or benign. Also,
the features we used are simpler and more straightforward (e.g., the
second feature above requires checking the English dictionary).

7. CONCLUSION
We presented an empirical study on the domain name-based fea-

tures of DNS queries and exploited these features to improve DNS
cache performance. The identified features, including the length of
a query name, the length of the longest-subdomain, and the num-
ber of subdomains or format fields, are explicitly available from a
domain name itself, without involving deep inspections. Whereas
the features do not indicate malicious purposes, the majority of do-
mains with such properties are indeed associated with the one-time-
use pattern and would be highly unlikely to be reused in a DNS
cache. Our analysis and simulation demonstrate that proactively
rejecting such domains from the cache can improve the overall ef-
fectiveness of DNS caching. Finally, we make one of the traces
used in this paper publicly available [1], with proper anonymiza-
tion while being able to perform training and simulation.
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