
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020 3807

Understanding the Manipulation on Recommender
Systems through Web Injection

Yubao Zhang , Jidong Xiao , Member, IEEE, Shuai Hao , Member, IEEE,

Haining Wang , Senior Member, IEEE, Sencun Zhu , Senior Member, IEEE,

and Sushil Jajodia , Fellow, IEEE

Abstract— Recommender systems have been increasingly used
in a variety of web services, providing a list of recommended
items in which a user may have an interest. While important, rec-
ommender systems are vulnerable to various malicious attacks.
In this paper, we study a new security vulnerability in recom-
mender systems caused by web injection, through which malicious
actors stealthily tamper any unprotected in-transit HTTP web-
page content and force victims to visit specific items in some
web services (even running HTTPS), e.g., YouTube. By doing so,
malicious actors can promote their targeted items in those web
services. To obtain a deeper understanding on the recommender
systems of our interest (including YouTube, Yelp, Taobao, and
360 App market), we first conduct a measurement-based analy-
sis on several real-world recommender systems by leveraging
machine learning algorithms. Then, web injection is implemented
in three different types of devices (i.e., computer, router, and
proxy server) to investigate the scenarios where web injection
could occur. Based on the implementation of web injection,
we demonstrate that it is feasible and sometimes effective to
manipulate the real-world recommender systems through web
injection. We also present several countermeasures against such
manipulations.

Index Terms— Recommender systems, recommendation
manipulation, web injection.

I. INTRODUCTION

IN THE era of information explosion, people have faced
with an overwhelming array of choices when looking for

information of their interests. There is a need to allocate the

Manuscript received April 24, 2019; revised September 14, 2019 and
November 1, 2019; accepted November 2, 2019. Date of publication
November 20, 2019; date of current version July 17, 2020. This work was
supported in part by the Army Research Office under Grant W911NF-13-
1-0421 and Grant W911NF-19-1-0049 and in part by the National Science
Foundation under Grant CNS-1618117 and Grant CNS-1822094. The asso-
ciate editor coordinating the review of this manuscript and approving it for
publication was Prof. Wei Yu. (Corresponding author: Yubao Zhang.)

Y. Zhang is with the Department of Electrical and Computer Engi-
neering, University of Delaware, Newark, DE 19716 USA (e-mail:
ybzhang@udel.edu).

J. Xiao is with the Department of Computer Science, Boise State University,
Boise, ID 83725 USA.

S. Hao is with the Department of Computer Science, Old Dominion Uni-
versity, Norfolk, VA 23529 USA, and also with the Center for Cyber Security
Education and Research, Old Dominion University, Norfolk, VA 23529 USA.

H. Wang is with the Department of Electrical and Computer Engineering,
Virginia Tech, Arlington, VA 22203 USA.

S. Zhu is with the Department of Computer Science and Engineering, Penn
State University, University Park, PA 16802 USA.

S. Jajodia is with the Center for Secure Information Systems, George Mason
University, Fairfax, VA 22030 USA.

Digital Object Identifier 10.1109/TIFS.2019.2954737

attention efficiently, and thereby recommender systems have
become increasingly popular in recent years. Since recom-
mender systems are able to allocate the attention and help users
locate the information of their interests, they have been used
in a wide variety of popular web services, such as YouTube,
Amazon, and Yelp. Those web services are increasingly rely-
ing on recommender systems to improve the quality of their
customers’ experience, given that a recommender system is
capable of making recommendations that match users’ pref-
erences. Moreover, recommender systems allow web service
providers to increasingly shape users’ selection and make
the maximum profit. Therefore, recommender systems have
become an essential component in a wide range of web
services.

Despite the importance of a recommender system in the web
ecosystems, it is vulnerable to malicious attacks. Xing etal. [1]
proposed pollution attacks to user-item recommender systems.
The attack could spoof the recommender system to recom-
mend any items to a victim user, but the recommended items
do not match the victim user’s preference. Yang et al. [2]
proposed fake co-visitation attacks to item-item recommenda-
tions, in which a recommender system could be tricked into
recommending an item that may be entirely irrelevant to the
viewing item.

Meanwhile, the economics of the web ecosystem is heavily
dependent on web traffic. However, some of them (e.g., HTTP
traffic) are insecure and could be modified, referred to as
web injection. Web injection manifests in a spate of ways,
but fundamentally occurs when attackers tamper directly with
web traffic. It can make profit from a variety of ways, such as
inserting rogue tracking pixel and injecting ads.

In this paper, we make a first attempt to understand the
manipulation on recommender systems caused by web injec-
tion. More specifically, there are basically two steps in the
manipulation: (1) web injection is executed by tampering
with in-transit HTTP traffic in public WiFi portals or proxy
servers, and the malicious payload is injected into the HTTP
webpage; (2) the tampered HTTP webpage will afterwards
force victims to visit the targeted items in a recommender
system so as to manipulate the recommender system (even
running HTTPS) through browser sessions. In such an attack
scenario, malicious actors can take advantage of browser
sessions in two different ways. First, the large scale of
browser sessions enables malicious actors to launch a fake

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1421-4072
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0001-7483-5252
https://orcid.org/0000-0002-9665-7511
https://orcid.org/0000-0002-1047-7967
https://orcid.org/0000-0003-3210-558X

3808 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

co-visitation attack. Co-visitations from a group of users would
facilitate to establish a connection between two items. Second,
each single browser session can be exploited to pollute the
profile of a user, which enables miscreants to recommend
any target items to the user. Moreover, such manipulations
could exacerbate the impact of Cross-Site Request Forgery
(CSRF) [3], [4] when CSRF vulnerabilities are exploited in
real-world web services.

We first conduct a measurement study on real-world recom-
mender systems and leverage machine learning to characterize
their activities, which pave the way for further analysis.
In particular, we collect the recommendation data from sev-
eral popular services, including YouTube, Yelp, Taobao, and
360 Android App market. Using machine learning methods,
we study the features that are publicly available in real-world
recommender systems, such as “views count” in YouTube
videos. We rank the importance of the features and predict
whether item x (called target item) will display in the recom-
mendation list of item y (called anchor item).

We then implement web injection in three different devices
to demonstrate the potential impact of web injection on recom-
mender systems. These three devices are a personal computer,
a router, and a proxy server, each of which corresponds to
an attack scenario. Attackers can use a personal computer to
set up a WiFi portal and inject attack payload into the HTTP
response of victims that connect to the portal. The implemen-
tations of web injection on routers and proxy servers could
impose way more severe impact on recommender systems,
since attackers can reach much more users through routers
and proxy servers.

To demonstrate the feasibility of exploiting web injection
for manipulation, we perform promotion attacks on real-world
recommender systems. A promotion attack is to promote a
specific target item and make it shown in an anchor item’s rec-
ommendation list. More specifically, promotion attacks include
three different kinds of attacks, i.e., profile pollution attack,
fake co-visitation attack, and CSRF-based attack. In light
of ethical concerns, a router with implementation of web
injection is only used to evaluate a profile pollution attack
against a few accounts created by ourselves; while automatic
attack platforms are implemented using Python to evaluate
fake co-visitation and CSRF-based attacks, respectively. Thus,
the impact of our experiments on real-world systems and users
are controllable.

Finally, we present the countermeasures against the web
injection based manipulation on recommender systems, includ-
ing defense against web content tampering, blocking web
service access, and limiting fake co-visitations.

In summary, we highlight our major contributions as
follows:

• We conduct a measurement study on four real-world
recommender systems and characterize their activities
with respect to the publicly available features by using
machine learning methods.

• We reveal that recommender systems are vulnerable
to web injection for malicious manipulation, and we
implement web injection in three different platforms to
show three different scenarios where web injection could
occur.

• We demonstrate the feasibility of the manipulation on
recommender systems by launching three different kinds
of promotion attacks on the real-world recommender
systems. We also discuss the countermeasure to prevent
the web injection based manipulation.

The rest of the paper is organized as follows. Section II
provides a general overview and related works on recom-
mender system and web injection. Section III presents our
measurement study on real-world recommender systems and
their behavior characterization based on machine learning.
Section IV introduces the implementation of web injection and
Section V explores specific attacks that are launched against
real-world recommender systems. Section VI describes the
countermeasures against the malicious manipulation. We dis-
cuss other potential attacks based on web injection in
Section VII, and finally, we conclude in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we present a brief overview of recommender
systems as they play an important role in popular web services
(e.g., YouTube [5], [6] and Amazon [7]), as well as mobile
application markets [8], [9]. We then survey existing attacks
against recommender systems and present a new attack vector,
which exploits insecure HTTP traffic to manipulate recom-
mender systems.

A. Recommender System

Web services are increasingly using recommender systems
to deliver information or products to users who would be
interested in. Many recommender systems have been devel-
oped in the past, including content based recommender sys-
tems [10], [11] and collaborative filtering based recommender
systems [12], [13]. We introduce two widely used classifi-
cations of recommender systems, i.e., filtering method and
recommendation tasks.

There are several filtering methods to generate recom-
mendations [14]. The content-based filtering method makes
recommendations based on a user’s preference. It seeks
items that have similar content to a user’s visiting his-
tory. The collaborative filtering method finds a set of users
with similar preferences (user-item collaborative filtering) or
searches a set of items that are similar to user visiting
history (item-item collaborative filtering) [15]. The demo-
graphic filtering method recommends items to users based on
their personal attributes (sex, age, country, etc.). Moreover,
hybrid filtering is commonly used in real-world recommender
systems [16].

The two popular recommendation tasks are user-item rec-
ommendation and item-item recommendation. The user-item
recommendation takes user visiting history as input, while the
item-item recommendation takes an item that is being visited
as input. In a user-item recommendation, a recommender
system recommends top-N items to a user based on his/her
visiting history, which includes both implicit and explicit vis-
iting history. In an item-item recommendation, a recommender
system recommends top-N items that are similar to those items
having been visited. Fig. 1 shows a user-item recommendation
and an item-item recommendation in YouTube, respectively.

ZHANG et al.: UNDERSTANDING THE MANIPULATION ON RECOMMENDER SYSTEMS THROUGH WEB INJECTION 3809

Fig. 1. User-item recommendation vs. Item-item recommendation.

Existing Attacks against Recommender System: Collabora-
tive filtering recommender systems help users select a item
they might like given a set of items. In a typical collaborative
filtering recommender system, an n × m user-item matrix
(In×m) is created, where Ii j represents i th user’s preference
about j th item. A Profile injection attack (also called shilling
attack) can introduce a bias into a collaborative filtering
recommender system by inserting fake user ratings [17], [18].
In a profile injection attack, an attacker first registers a
large number of fake accounts. With these fake accounts,
the attacker interacts with the recommender system to build
within it a large number of fake profiles to mislead the
system’s recommendations. Researchers have proposed several
techniques to detect profile injection attacks, including a
statistical method [19], a classification method [20], [21], and
a data reduction-based method [22].

User-item recommender systems personlize items to users
based on their profile (e.g., browsing history). A Pollution
attack [1] injects fake information into a user’s profile via
CSRF [3], such that an attacker can spoof the system to rec-
ommend the target item to a user. Xing et al. [1] demonstrated
that YouTube, Amazon, and Google search are vulnerable to
such attacks. However, a pollution attack is not applicable to
item-item recommender systems.

Co-visitation recommender systems recommend items to
users according to a co-visitation graph, which is a data
structure for recording the co-visitation relationship among
items. We denote a co-visitation graph as G = (V , E),
where each node i is an item and an edge (i, j) means that
items i and j were co-visited. Here, co-visitation relation-
ship among two items means that the visitations of these
two items appear successively within a certain period, e.g.,
a user watches two videos on YouTube successively within ten
minutes. Co-visitation recommendation has been implemented
in several popular web services due to its simplicity, such
as Amazon and YouTube. Yang et al. [2] proposed a fake
co-visitation injection attack, which injects fake co-visitation
into the co-visitation graph. In comparison with [2], our work
exploits web injection to conduct not only fake co-visitation
attack, but also profile pollution attack, and CSRF-based attack
on recommender systems.

Additionally, Calandrino et al. [23] proposed a privacy
attack to infer a user’s profile by analyzing the publicly avail-
able recommendations from the recommender systems. They
demonstrated that several popular web services (e.g., Amazon
and Last.fm) are vulnerable to the attack.

Fig. 2. An example of web injection. When a victim is visiting the MSNBC
news website, web injection tampers with the in-transit HTTP content of
MSNBC news webpage by injecting JavaScript to stealthily visit YouTube
videos. The victim’s browser executes the injected script to automatically
visit YouTube videos in a stealthy manner.

B. Web Injection

Malicious and unwanted actors could directly tamper with
browser sessions and modify webpage content that reaches a
browser, referred to as web injection [24]. Web injection man-
ifests in many forms. Among these forms, ad injection reigns
as one of the most lucrative strategies for monetizing web
traffic. Public WiFi portals (e.g., airport WiFi hotspots) and
ISP routers could be compromised to tamper with in-transit
HTTP content to inject ads [25], [26]. In addition, modifying a
website through a man-in-the-middle attack could compromise
the anonymity of some Tor users [27].

Our work presents a potential attack to recommender sys-
tems by tampering in-transit HTTP content in public WiFi
portals or even ISP routers. Fig. 2 shows an example of
manipulating the recommender system of YouTube via web
injection. A victim visits the MSNBC news website. Web
injection tampers with the in-transit HTTP content by injecting
JavaScript to stealthily visit YouTube videos. Note that the
attack just redirects victims to YouTube, instead of tampering
with YouTube webpage content. The victim’s browser executes
the injected script to automatically visit YouTube videos in a
stealthy manner, such as creating an invisible window on back-
ground. If the victim has logged in YouTube, YouTube counts
the visitations as logged-in actions of the victim. If a large
number of YouTube accounts visit YouTube unconsciously in
this way, it could challenge the YouTube’s recommendation
mechanism.

III. MEASUREMENT ANALYSIS OF

RECOMMENDER SYSTEMS

Due to various recommendation algorithms and diverse
recommendation goals, practical recommender systems are
complicated. Although there are plenty of works on theoretical
analysis of a specific recommendation algorithm (e.g., collab-
orative filtering), it is difficult to perform systematic analy-
sis when more than one recommendation algorithms work
together in practice [14], [16]. Different evaluation metrics
(e.g., coverage and novelty) are employed to guarantee the
quality of recommendations.

Instead of theoretically analyzing real-world recommender
systems, we conduct a measurement-based analysis on recom-
mender systems by using machine learning methods. To this
end, we first collect recommendation data from several ser-
vices, including YouTube, Yelp, Taobao, and 360 Android
App market. We extract features from publicly available

3810 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

TABLE I

DATASET SUMMARY

recommendation data and train binary classifiers to mimic how
a recommender system determines whether to recommend the
target item to a user given an anchor item. Then we can rank
the importance of the features and predict whether the target
item will display in the recommendation list of an anchor
item. Note that we only analyze the item-item recommendation
in this section, while Xing et al. [1] investigated user-item
recommendation (personalization).

A. Datasets

We collect data from YouTube [28], Yelp [29], Taobao [30],
and 360 Android App market [31], respectively. We utilize
Selenium to handle the dynamic content of webpages. The
datasets are summarized in Table I and detailed below.

YouTube is a video-sharing website. It recommends 20
videos on the right hand side of the video that is being viewed.
We collect a video titles, the number of views, publisher
names, ratings, the review comments, and the recommenda-
tions from the anchor video that is being viewed. The videos
in the recommendations are then viewed and crawled.

Taobao is a Chinese online shopping website similar to
Amazon. It recommends five “People also viewed” prod-
ucts downwards the product webpage that is being browsed.
We collect product titles, sales, seller names, descriptions, and
recommendations. Similar to YouTube collection, the products
in the recommendations are then browsed and crawled.

360 App Market is a Chinese App market similar to Google
play. It recommends seven “People also liked” Apps on the

right hand side of the App that is being viewed. We collect
App titles, rate scores, the number of downloads, review
comments, and recommendations, as well as good, fair, and
bad ratings. Similarly, the Apps in the recommendations are
then browsed and crawled recursively.

Yelp is a crowd-sourced local business review and social
networking site. It recommends three “People also viewed”
business places (e.g., restaurants) on the right hand side of the
anchor business place that is being viewed. We collect place
names, the number of review, review comments, rating, and
recommendations. Similarly, places are crawled recursively
from the recommendations.

B. Features

We group positive samples by selecting pairs of items that
one item is in the recommendation list of the other. The
recommendation relationship is recorded during the data col-
lection. Negative samples are grouped by randomly choosing
pairs of items without recommendation relationship between
each other. For each data sample, we consider the following
features.

Same publisher/seller. It is set to 1 if two items are
from the same publisher/seller; otherwise, 0. Some recom-
mender systems tend to recommend items from the same
publisher/seller.

Title similarity. We measure the similarity between two
titles by computing their edit distance. Larger edit distance
means that two titles are less similar to each other.

Comment/description similarity. We first aggregate com-
ments/descriptions and remove stop words. Then, we utilize
scikit-learn toolkit [32] to tokenize the document and obtain
a vector of token counts. We measure comment/description
similarity by computing the similarity of two token vectors.

Numeric features. For numeric values of items, we cal-
culate the ratio of two numeric values of each pair. The
detailed features are listed in Table I. The feature same
recommendation count between items a and b therein means
the number of recommendations that are displayed in the
recommendation list of both items a and b.

C. Evaluation Results

We employ three different classifiers to evaluate the predic-
tion accuracy, including Gaussian Naïve Bayes (GNB), Sup-
port Vector Machine (SVM), and Neural Network model (NN).
GNB and SVM classifiers are built using scikit-learn toolkit,
while NN is implemented using Keras [33]. Specifically,
we use default priors in GNB, which is calculated from the
datasets. RBF kernel is used in SVM. We utilize GridSearch
to optimize two hyperparameters γ and C of RBF kernel
SVM. The NN model we implemented here is a multi-layer
feed forward neural network model. We train the model using
Stochastic Gradient Descent(SGD) and use crossentropy loss
function for the network. Our results are obtained through the
10-fold cross-validation.

The dataset size and prediction performance are listed
in Table II. Each dataset has equal positive and negative
samples. We observe that all the three classifiers have excellent

ZHANG et al.: UNDERSTANDING THE MANIPULATION ON RECOMMENDER SYSTEMS THROUGH WEB INJECTION 3811

TABLE II

PREDICTION PERFORMANCE

performance in four different datasets, except GNB on the
Taobao dataset. The performance consistency suggests that our
machine learning methods are, to a certain extent, effective
to demonstrate how recommender systems work. Especially,
feature importance can indicate the key points of recommender
systems.

We utilize ensembles of decision tree with sklearn to inves-
tigate the relative importance of the features for each recom-
mender system. The results are listed in Table III. We observe
that the number of same recommendations for two items is the
most important feature for all recommender systems, which is
straightforward to understand on how recommender systems
measure the similarity of items. If two items have more similar
recommendations, they are more likely to be similar to each
other.

Except the number of same recommendations, feature
importance ranking of different recommender systems varies.
We enumerate the features for each recommender system
based on feature importance ranking.

YouTube promotes the recommendations from the same
publisher. The other features play less important role in the
recommendation. Taobao promotes the products with similar
titles. Sales and descriptions are not important in the recom-
mendation. Note that the feature of same seller is 0 because
Taobao only recommends products from the same seller. For
360 App market, the other features are way less important
than the number of same recommendations, which implies
that the recommendation highly relies on the item similarity.
Yelp makes recommendations based on similar comments.
It also prefers the recommendations with the similar number
of reviews, which means similar popularity.

It is worth to note that our analysis can only reveal how
recommender systems work to a certain extent. However, our
machine learning methods can take input other information
(e.g., co-visitation graph and user profile) to further improve
prediction accuracy.

D. Selection of Anchor Items

Although the analysis above cannot uncover how those
recommender systems work completely, it demonstrates some
of principles about how those recommender systems work.
Therefore, it aids us to select anchor items efficiently, such that
the target items can be displayed in their recommendation lists
with less cost. Taking input the target item, k nearest neighbors
algorithm can be employed to select the anchor items.

First, we measure the similarity between items a and item
b by computing cosine similarity of their feature vectors:

sima,b = �A · �B
‖ �A‖2 ∗ ‖ �B‖2

(1)

TABLE III

RELATIVE FEATURE IMPORTANCE

where �A and �B represent the feature vectors of a and b,
respectively. Then, we find the top n items that are most
similar to the target item using k nearest neighbors algorithm.
Additionally, we can construct the recommendation structure
with the crawled dataset and leverage the structure information
to improve the quality of selected anchor items.

IV. IMPLEMENTING WEB INJECTION

In this section, we implement web injection in three differ-
ent scenarios, including personal computer, router, and HTTP
proxy. We also discuss the injection vectors to implement web
injection on webpage.

A. HTTP Tampering

We take into account three general scenarios where attackers
could sniff HTTP traffic and modify webpage content. First,
an attacker can use personal computer to set up a hotspot.
Second, public wireless routers in business places (e.g., coffee
shop) could be utilized to perform HTTP traffic tampering.
Third, proxy server is also an option for attackers for web
traffic tampering. Corresponding to the above three scenarios,

3812 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 3. Web injection in computer/router.

Fig. 4. Web injection in web proxy.

we implement HTTP content tampering in personal computer,
router, and proxy server, respectively.

1) Personal Computer: We implement web injection in a
Ubuntu system (Ubuntu 16.04 LTS), which acts as a WiFi
hotspot, as Fig. 3 shows. The implementation of web injection
is on packet level and based on packet firewall. For the packets
coming in through network interface, a specific firewall rule
checks if the packet is a TCP packet and its source port is 80
or 8080 in the mangle table. If the packet matches, it jumps
to the target NFQUEUE, where packets are queued for a user
space process. We employ libnetfilter_queue library [34] to
receive the queued packets via a dedicated socket and then
manipulate the payload. Also, we recalculate both the TCP
and the IP checksums after manipulation, because otherwise
the injected packet would be dropped by the network.

2) Router: We implement web injection in a router with
LEDE operating system. Since LEDE is a Linux operating
system, the implementation is almost the same as in Ubuntu
system. The router with web injection implementation is
employed to perform profile pollution attack in our following
experiments.

3) HTTP Proxy: HTTP proxy is widely used since it can
facilitate access to web content and provide anonymity, as well
as bypassing IP address blocking. It has been reported that a
number of HTTP proxies are actively modifying the relayed
content [35]–[37]. To implement web injection in HTTP proxy,
we leverage Internet Content Adaptation Protocol (ICAP),
which is often used to implement content filters in trans-
parent proxy servers. At the core of ICAP is a cache that
proxies client transactions and process them through the ICAP
server. In our implementation, we set up Squid proxy server
and ICAP server in Ubuntu system (Ubuntu 16.04 LTS). The
ICAP server is configured to modify HTTP response relayed
by the proxy server, as shown in Fig.4.

B. Injection Vectors

To launch various web injection attacks against
recommender systems, we manipulate the packet payload by
injecting scripts, e.g., tags. This enables us to automatically
introduce actions upon the target items of a recommender
system, including viewing the web pages of target items and
adding comments to target items. The script injected into
HTTP webpage is capable of making the browser rendering
the webpage automatically take actions upon target items
without being noticed by web users. For example, when a
victim visits an HTTP webpage, under injection attacks, his
browser will execute some injected script (e.g., a frame tag),
and hence automatically view YouTube videos by creating
an invisible window on background. If users have logged
in or have automatic log-in enabled, the unaware visits can
not only change users’ own profile, but also generate valid
user-item connections. This connection plays key role in
collaborative filtering recommendation algorithm.

Injected script can conduct stealthy actions upon target
items in many ways. For example, we are able to redirect
users to target items of a recommender system by stealthy
view-based actions (e.g., via window.open or iframe). Such
actions can be executed in background without client’s aware-
ness. For example, an iframe of very small size can play
a mute YouTube video that would be ignored by victims.
Additionally, Content Security Policy (CSP) could block the
cross-site redirection operations due to domain restriction.
However, we can modify CSP configuration on packet level
at the very beginning.

V. ATTACKING REAL-WORLD SYSTEMS

In this section, we demonstrate three different attacks men-
tioned in Section IV against real-world recommender systems
based on web injection.

A. Experiment Overview

We evaluate promotion attacks on real-world recommender
systems on several popular websites, including YouTube (the
feature “Up Next video”, the feature “Recommended” in users’
homepage), 360 App market (the feature “People also liked”),
Taobao (the feature “People also liked”, the feature “You may
like” in users’ homepage), and Yelp (the feature “People also
viewed”). Our attack goal is to make the target item display in
the recommendation list of an anchor item or a user. Specif-
ically, three different promotion attacks are evaluated in two
modes: the logged-in mode and the anonymous mode. In the
logged-in mode, there will be a logged-in user of the web
service and hence the recommendations are tailored for the
logged-in user; while in the anonymous mode, there is no such
a logged-in user and therefore the recommendation systems
select the items in various ways, e.g., user’s geolocation or
language preference.

Moreover, for the logged-in mode, we also inspect two
scenarios: purging user history and not purging user his-
tory. In general, the recommendations would be significantly
impacted by the presence of user history, which explicitly
indicates the user’s preference. However, purging user history

ZHANG et al.: UNDERSTANDING THE MANIPULATION ON RECOMMENDER SYSTEMS THROUGH WEB INJECTION 3813

will force the recommendation system into selecting the items
in different ways, e.g., similar to the anonymous mode or based
on other invisible factors such as established user profiles
stored in web services.

First, fake co-visitation attack can affect the co-visitation
graph and hence manipulate the item-item recommendations
that recommender systems make. We implement an automatic
co-visitation attack platform using Python and utilize the open
source web crawler Scrapy to collect item information from
websites. To avoid the injected co-visitations being filtered
by the web services, we inject the co-visitations with random
time intervals, as well as utilizing Tor to disguise IP address of
our platform and change IP address periodically. An anchor
item is successfully attacked if the target item is shown in
its recommendation list. Note that, we perform injections in
both logged-in and anonymous scenarios. Comparing with
fake co-visitation attack in [2], fake co-visitation attack via
web injection can not only manipulate co-visitation graph by
the co-visitations sent by victims’ browsers, but also affect the
item-item recommendations to these victims themselves.

Second, profile pollution attack is to manipulate the per-
sonalized items for a certain user. In other words, its goal
is to spoof the user-item recommendations of recommender
systems. It is different from profile injection attack. It pollutes
the profile of an existing user, while profile injection attack is
injecting fake new profiles. We conduct an automatic profile
pollution with a smart router running web injection for a few
accounts that we create for the experiments. An attack is
successful if the target item is shown in user-item recommen-
dations, e.g., the feature “Recommended” in users’ YouTube
homepage.

Third, CSRF-based attack is more powerful than the
above two attacks. It is capable of creating valuable
user-item connection by conducting purchasing or com-
menting actions and hence manipulating recommendations
dramatically. We restrain our experiments to only make
non-misleading comments using a very small number of
accounts. An anchor item is successfully attacked if the
target item is shown in its recommendation list. Note that
we merely simulate CSRF-based attack, instead of exploiting
CSRF vulnerabilities of web services.

Ethical Considerations: Our work is to demonstrate the
potential hazard of HTTP traffic tampering to recommender
systems. We understand that our experiments are likely to
impose certain impact on real-world recommender systems,
though we want to emphasize that our experiments have quite
low risks to service providers and users. We take several
measures to mitigate the risks. First, we limit our experiments
to a small scale. As we mentioned, our objective is to demon-
strate the potential hazard,so a small-scale attack is capable
of achieving our goal. Second, we create a small number of
accounts to conduct profile pollution and CSRF-based attacks.
The attacks would merely affect these users themselves, with-
out impact on other users and service providers. Third, our
experiments strictly follow the policy for vulnerability testing.
Fourth, we do not perform experiments on any public router.
We only use a private router to perform profile pollution attack
on a few accounts created by ourselves.

TABLE IV

PROMOTION RATE OF OUR ATTACKS

B. Overall Results

We measure the effectiveness of our attacks with the metrics
promotion rate, which is defined as the number of successfully
attacked anchor items over the total number of chosen anchor
items for each attack. Table IV shows the promotion rate of
our attacks. The details will be described later on.

We observe that the promotion rate in 360 App Market
is much higher than other websites, which indicates that the
recommendation algorithm of 360 App Market is the weakest
against attacks. For all websites, the attacks in the logged-in
mode have higher promotion rate than anonymous mode, since
the attacks in the logged-in mode aim at the recommendations
of an individual and the attacks in anonymous mode aim at
the recommendations systemwide.

C. YouTube

We crawled the metadata information of over 20 thousand
videos, as described in Section III. For each attack, we ran-
domly select 100 target videos and choose one corresponding
anchor video for each target video using the method in
Section III-D. For simplicity, we call a target video and its
corresponding anchor video a pair of videos. Throughout our
experiments, we examine the recommendation list of each
anchor item right before we start the attack and make sure
that a target item is not in the recommendation list of its
corresponding anchor item yet (otherwise, there is no need
to promote).

1) Fake Co-Visitation Attack: To inject a fake co-visitation,
a pair of videos are viewed in the same session. The viewing
duration of each video is two minutes and the interval between
sessions is one minute on average. This attack lasted one week.

Since fake co-visitation attack can result in either the target
video showing in the recommendation list of its anchor item
for all users, i.e., global promotion, or only for those users who
co-visit the pair of videos, i.e., individual promotion. To mount
the attack globally and achieve global success, we select 100
pairs of videos and insert fake co-visitations anonymously;
while to test individual success, we select another 100 pairs
of videos and insert fake co-visitations with logged-in users.

In the anonymous scenario, seven pairs among the selected
pairs are promoted successfully. This low promotion rate could
be attributed to (1) YouTube can detect fake co-visitation to
some an extent and (2) we do not deliberately select unpopular
videos to improve the promotion rate. Some of videos are
highly popular. View count is used to measure the popularity
of videos. For the selected and successfully promoted anchor

3814 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 5. YouTube promotion rate in the anonymous scenario.

videos, the means of view count are 2, 430, 000 and 75, 700,
respectively, which could imply that unpopular videos are
more vulnerable to this fake co-visitation attack. Fig. 5 depicts
the promotion rate against time. Four pairs are promoted in
the first day. Two are promoted till the forth day and one is
promoted till the seventh day.

For the logged-in scenario, the average promotion rate over
nine users is 67.89%, which is much higher than that of the
anonymous scenario. Especially, there are three users whose
promotion rate are more than 95%. The higher promotion rate
is attributed to the fact that we only focus on the logged-in
users themselves. While global promotion has way more ben-
efit than individual promotion, it requires much more resource
to achieve. For the selected and successfully promoted anchor
videos, the means of view count are 3.25M and 4.27M,
respectively. We observe that anchor videos of highly popular
can be easily promoted in the logged-in scenario.

2) Profile Pollution Attack: The feature “Recommended”
in a user’s YouTube homepage recommends 10 videos to the
user. To attack the feature, we select 100 pairs of videos,
in which each target video is already in the recommenda-
tion list of its anchor video, and inject the anchor videos
into the watching history of 9 users. Each user’s homepage
recommendation is checked 100 times. Fig. 6 shows the
number of successfully promoted videos with profile pollution
attack over nine accounts. Blue square indicates the average
number of successfully promoted videos of each account.
The first 5 users’ watching histories are purged before the
attack, while the watching histories of the last 4 users remain
intact. We observe that the promotion rate is much higher if
the previous watching history is purged. This indicates that
newcomers with less watching records are more vulnerable to
such a profile pollution attack.

3) CSRF-Based Attack: As mentioned before, we do not
exploit CSRF vulnerabilities of any real-world web services.
To simulate CSRF-based attacks, we randomly select 100 pairs
of videos and use nine accounts to make simple comments
(e.g., “I like it.”) and click the like on both videos in a
pair. Within the 100 pairs, we succeed to promote 15 target
videos globally with the promotion rate of 15%, which is
much more effective than anonymous co-visitation. For the
selected and successfully promoted anchor videos, the means
of view count are 2.37M and 3M, respectively. It implies that

Fig. 6. Number of successfully promoted videos over nine accounts.

CSRF-based attacks (e.g., making comment and like) could be
highly capable to successfully promote popular videos.

4) Summary: First, promoting an anchor video globally is
difficult, while targeting an individual victim is much more
easier. The attack vector via web injection in routers or even
ISPs is able to reach a large number of users and spoof
the recommendations of these victims. Second, profile pol-
lution attack via web injection can effectively spoof user-item
recommendations. Due to the high exposure of the feature
“Recommended” in the YouTube homepage, the attack could
have a strong impact upon recommender systems. Third,
CSRF-based attack on a recommender system is powerful,
since it can promote a target video to a popular video that
has good exposure. Fortunately, the attack relies on CSRF,
which makes it hard to mount in reality.

D. 360 App Market

We crawled information of more than 30 thousand Apps.
Since there is no user-item recommendation feature and com-
ments are not allowed through the web portal, we only launch
fake co-visitation attacks on 360 App market.

1) Fake Co-Visitation Attack: To inject a fake co-visitation,
a pair of App webpages are visited in the same session.
We choose one corresponding anchor App for each target
App using the method in Section III-D. The interval between
sessions is one minute on average. The attack lasts one week.
Similarly, we consider two scenarios for fake co-visitation
attack, i.e., anonymous and logged-in. Each of them has 50
pairs of Apps.

In the anonymous scenario, App webpages are visited
anonymously. Within 50 anchor Apps, 41 of them are pro-
moted successfully on a global scale with the promotion rate
of 82%. This high promotion rate means that the recom-
mender system of 360 App market is considerably vulnerable
to anonymous fake co-visitation attacks. Fig. 7 shows the
promotion rate against time. Most of anchor Apps are suc-
cessfully promoted within the beginning two days. We utilize
download count to measure the popularity of anchor Apps,
which could impact the promotion rate. For the selected and
successfully promoted anchor Apps, the means of download
count are 18.24M and 14.29M, respectively. It may imply

ZHANG et al.: UNDERSTANDING THE MANIPULATION ON RECOMMENDER SYSTEMS THROUGH WEB INJECTION 3815

Fig. 7. 360 App Market promotion rate in anonymous scenario.

that 360 App market is susceptible to this attack regardless
of App popularity.

In the logged-in scenario, each pair of App webpages are
visited with a logged-in user. The attack lasts two weeks.
Within 50 anchor Apps, 44 of them are promoted successfully
for the user with a promotion rate of 88%. For the selected and
successfully promoted anchor Apps, the means of download
count are 16.89M and 27.15M, respectively. It implies that
highly popular Apps are also susceptible to the promotion
attack, which is quite similar to anonymous fake co-visitation
attacks.

2) Summary: The recommender system of 360 App market
is rather vulnerable to both anonymous and logged-in fake
co-visitation attacks. Moreover, popular Apps with high down-
load count are also susceptible to such attacks.

E. Taobao

We crawled information of more than 44 thousand
items. Since the comments are anonymous, we launch fake
co-visitation attack and profile pollution attack on Taobao.

1) Fake Co-Visitation Attack: To inject a fake co-visitation,
a pair of item webpages are visited in the same session.
We choose one corresponding anchor item for each target
item using the method in Section III-D. The interval between
sessions is one minute on average. The attack lasts one week.
Similarly, we consider two scenarios for fake co-visitation
attacks, i.e., anonymous and logged-in. For each of them,
50 pairs of items are randomly selected.

In the anonymous scenario, item webpages are visited
anonymously. Within 50 anchor items, 15 of them are pro-
moted successfully on a global scale. Fig. 8 shows the pro-
motion rate against time. Nine anchor items are successfully
promoted in the first day. We utilize sold count to measure the
popularity of anchor items. For the selected and successfully
promoted anchor items, the means of sold count are 2.4 and
0.8, respectively. The sold count of anchor items is quite low
because plenty of anchor items have never been sold.

In the logged-in scenario, each pair of item webpages are
visited with a logged-in user. Within 50 anchor items, 22 of
them are promoted successfully for the user with a promotion
rate of 44%. For the selected and successfully promoted
anchor items, the means of sold count are 7.9 and 12.7,
respectively. Even though the sold count is still quite small,

Fig. 8. Taobao promotion rate in anonymous scenario.

it could conjecture that items with sold count less than a certain
value (e.g., 100) might be susceptible to such a attack, which
represents a large number of items in Taobao due to their
heavy-tailed distribution.

2) Profile Pollution Attack: The feature “You may like” in
a user’s Taobao homepage recommends a group of items to
the user. To attack the feature, we select 50 pairs of videos
in which the target item is already in the recommendations of
the anchor item and inject the anchor items into the history
of a user. The homepage recommendations is checked 100
times. However, none of the target items is recommended in
the feature “You may like”. Instead, this feature is employed
to promote the items that Taobao itself needs to promote.

3) Summary: The recommender system of Taobao is some-
what vulnerable to both anonymous and logged-in fake
co-visitation attacks. However, it is resistant to profile
pollution attacks.

F. Yelp

We crawled information of more than one thousand restau-
rants. Since there is no user-item feature and fake comments
could be misleading, we only launch fake co-visitation attacks
on Yelp.

1) Fake Co-Visitation Attack: To inject a fake co-visitation,
a pair of restaurant webpages are visited in the same session.
We choose one corresponding anchor restaurant for each target
restaurant using the method in Section III-D. The interval
between sessions is one minute on average. The attack lasts
one week. Similarly, we consider two scenarios for fake
co-visitation attack, i.e., anonymous and logged-in. For each
of them, 50 pairs of restaurants are randomly selected. Review
count is used to measure restaurant popularity.

In the anonymous scenario, restaurant webpages are visited
anonymously. Within 50 anchor restaurants, none of them
are promoted successfully on a global scale. For the selected
anchor restaurants, the mean of review count is 256.8.

In the logged-in scenario, each pair of restaurant webpages
are visited with a logged-in user. The attack lasts one week.
Within 50 anchor restaurants, two of them are promoted
successfully for the user. For the selected and successfully pro-
moted anchor restaurants, the mean of review count are 221.8
and 967, respectively. Two successfully promoted anchor

3816 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

restaurants are both considerably popular with a large number
of reviews.

2) Summary: The recommender system of Yelp is very
resistant to both anonymous and logged-in fake co-visitation
attacks. We conjecture that CSRF-based attacks could affect
the recommender system of Yelp, since Yelp emphasizes the
quality of reviews all the time. However, we do not launch
CSRF-based attacks (e.g., making fake comments) due to
ethical consideration.

VI. COUNTERMEASURES

Exploiting web injection to attack web services is quite
covert from the viewpoints of both web service providers and
clients. Therefore, we discuss different countermeasures from
the perspectives of both parties.

A. Implementing HTTPS on Web Services

HTTPS leverages the SSL/TLS to create an encrypted con-
nection between a web server and a web browser. If SSL/TLS
is used by a web server, web content tampering is hardly
possible.

However, while the adoption of HTTPS is increasing,
the practical usage of HTTPS is still at a relatively low level
over the entire Internet [38]. The reasons include the lack
of awareness of growing importance of secure connections,
the cost and perceived complexity of switching to HTTPS,
as well as the potential Search Engine Optimization (SEO)
impact.

B. Limiting Fake Co-Visitations

Yang et al. proposed leveraging CAPTCHA, anomaly detec-
tion, and distinguishing registered users to limit fake co-
visitations [2]. However, our study considers different attack
scenarios from them. The attacks we explore include a set
of registered users who are hijacked to make co-visitations,
instead of individual attackers who attempt to promote or
demote some items via making a burst of co-visitations.
Therefore, based on the countermeasures proposed in [2], web
service providers should take the IP addresses of visitors into
consideration and detect anomalous behaviors in certain IP
addresses. Moreover, analyzing user behaviors on the basis
of IP address could also be able to detect potential profile
pollution attacks. If a spate of users with the same IP address
(probably through the same router in a public place) conduct
the same action (e.g., watching the same video), these users
are probably exposed to profile pollution attacks.

C. Securing User Browsers

In order to study the mitigation strategies on the client
side, we develop the extensions on two widely used browsers,
Chrome and Firefox. The extensions detect and block a fake
co-visitation attack by searching the patterns of the invisible
co-visitation, e.g.,

“window\.open\(“(http(s)?:\/\/)?((w)3.)?YouTube?(.com)?
\/.+”\)”

or “<iframe.*?src=”(http(s)?:\/\/)?((w)3.)?YouTube?(.com)?
\/.+”.

The evaluation on our testbed demonstrates that our exten-
sions can effectively identify and prevent the activities of
injected co-visitation. Furthermore, the extensions can also
detect suspicious CSRF-based attacks by matching keywords
in the URL path (e.g., “action”, “comment”, and “submit”) and
cooperate with existing CSRF defense mechanisms, such as
synchronizer tokens, double cookie defense, encrypted token
pattern, and custom header [39], to improve the effectiveness
against recommendation manipulation.

VII. DISCUSSION

Although we only evaluate the promotion attacks on
real-world recommender systems, the attacks that we demon-
strate also applied to the demotion attacks, i.e., obliterat-
ing target item from anchor item’s recommendation list.
Yang et al. [2] presented the feasibility of exploiting the fake
co-visitation to perform demotion attacks.

In addition, web injection could be widely applied to
perform a variety of attacks, such as ad injection, targeting
ad pollution, and malware download.

A. Ad Injection

As presented in [25], [26], several practical instances of ad
injection are illustrated, e.g., public WiFi portals that tamper
with in-transit HTTP content to inject ads. Ad injection by
tampering is a straightforward manner of monetizing browser
traffic. However, such activities would not only degrade user
experience, but also harm the reputation of website [24]. Sim-
ilarly, adversaries can inject malicious code to automatically
download malware.

B. Ad Targeting

Ad targeting can be used by advertisers to target users who
are interested in some categories [40] and maneuver the ad
selection. Ads that might relate to the user’s online interest
are selected according to the observation from her browsing
pattern, which is profiled by ad exchange and other third party
trackers via installing third party JavaScript tracking code.
Tampering with in-transit HTTP content can load polluted
content in a camouflaged manner and impact the user’s profile,
such that attackers can influence the ad selection process.

In comparison with these attacks mentioned above,
the attacks on recommender systems via web injection are
more stealthy. It attributes to the reason that attacks on
recommender systems are based on the behavior of visiting
the recommender system itself, rather than tampering with
webpage appearance like ad injection does. Such stealthiness
could make the attacks more powerful with respect to both
duration and scale.

VIII. CONCLUSIONS

In this paper, we revealed that recommender systems are
vulnerable to web injection, which is exploitable for malicious
manipulation in a recommender system. To deeply understand
this security threat, we first conducted a measurement-based
analysis on several real-world recommender systems by using

ZHANG et al.: UNDERSTANDING THE MANIPULATION ON RECOMMENDER SYSTEMS THROUGH WEB INJECTION 3817

machine learning methods. Then we implemented web injec-
tion in three different devices (i.e., computer, router, and proxy
server) to investigate the potential impact of web injection.
Based on these implementations, we further demonstrated
that it is feasible and sometimes effective to manipulate
the real-world recommender systems through web injec-
tion. Finally, we presented the countermeasures against the
malicious manipulations on recommender systems, including
defenses against web content tampering, limiting fake co-
visitations, and securing user browsers.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
insightful comments, which help improve the quality of this
paper.

REFERENCES

[1] X. Xing, W. Meng, D. Doozan, A. C. Snoeren, N. Feamster, and
W. Lee, “Take this personally: Pollution attacks on personalized ser-
vices,” in Proc. USENIX Secur. Symp., 2013, pp. 671–686.

[2] G. Yang, N. Z. Gong, and Y. Cai, “Fake co-visitation injection attacks
to recommender systems,” in Proc. NDSS, 2017, pp. 1–15.

[3] W. Zeller and E. W. Felten, “Cross-site request forgeries: Exploitation
and prevention,” New York Times, pp. 1–13, Oct. 10, 2008.

[4] A. Sudhodanan, R. Carbone, L. Compagna, N. Dolgin, A. Armando, and
U. Morelli, “Large-scale analysis & detection of authentication cross-site
request forgeries,” in Proc. IEEE Eur. Symp. Secur. Privacy, Apr. 2017,
pp. 350–365.

[5] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
YouTube recommendations,” in Proc. 10th ACM Conf. Recommender
Syst., 2016, pp. 191–198.

[6] J. Davidson et al., “The YouTube video recommendation system,” in
Proc. 4th ACM Conf. Recommender Syst., 2010, pp. 293–296.

[7] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
Item-to-item collaborative filtering,” IEEE Internet Comput., vol. 7,
no. 1, pp. 76–80, Jan./Feb. 2003.

[8] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proc. 20th Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 951–960.

[9] B. Liu, D. Kong, L. Cen, N. Z. Gong, H. Jin, and H. Xiong, “Person-
alized mobile app recommendation: Reconciling app functionality and
user privacy preference,” in Proc. 8th ACM Int. Conf. Web Search Data
Mining, 2015, pp. 315–324.

[10] K. Lang, “NewsWeeder: Learning to filter netnews,” in Machine Learn-
ing Proceedings. Amsterdam, The Netherlands: Elsevier, 1995, pp. 331–
339.

[11] R. J. Mooney and L. Roy, “Content-based book recommending using
learning for text categorization,” in Proc. 5th ACM Conf. Digit.
Libraries, 2000, pp. 195–204.

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“GroupLens: An open architecture for collaborative filtering of net-
news,” in Proc. ACM Conf. Comput. Supported Cooperat. Work, 1994,
pp. 175–186.

[13] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 40, no. 8, pp. 30–37, Aug. 2009.

[14] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender
systems survey,” Knowl.-Based Syst., vol. 46, pp. 109–132, Jul. 2013.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-
orative filtering recommendation algorithms,” in Proc. 10th Int. Conf.
World Wide Web, 2001, pp. 285–295.

[16] C. Porcel, A. Tejeda-Lorente, M. Martínez, and E. Herrera-Viedma,
“A hybrid recommender system for the selective dissemination of
research resources in a technology transfer office,” Inf. Sci., vol. 184,
no. 1, pp. 1–19, 2012.

[17] I. Gunes, C. Kaleli, A. Bilge, and H. Polat, “Shilling attacks against
recommender systems: A comprehensive survey,” Artif. Intell. Rev.,
vol. 42, pp. 767–799, Dec. 2014.

[18] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward trustwor-
thy recommender systems: An analysis of attack models and algorithm
robustness,” ACM Trans. Internet Technol., vol. 7, no. 3, p. 23, Oct. 2007.

[19] N. Hurley, Z. Cheng, and M. Zhang, “Statistical attack detection,” in
Proc. 3rd ACM Conf. Recommender Syst., 2009, pp. 149–156.

[20] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik, “Detecting profile
injection attacks in collaborative recommender systems,” in Proc. 8th
IEEE Int. Conf. Enterprise Comput., e-Commerce, e-Services, Jun. 2006,
p. 23.

[21] C. A. Williams, B. Mobasher, and R. Burke, “Defending recommender
systems: Detection of profile injection attacks,” Service Oriented Com-
put. Appl., vol. 1, no. 3, pp. 157–170, Nov. 2007.

[22] S. Zhang, Y. Ouyang, J. Ford, and F. Makedon, “Analysis of a low-
dimensional linear model under recommendation attacks,” in Proc. 29th
ACM SIGIR Conf. Res. Develop. Inf. Retr., 2006, pp. 517–524.

[23] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and
V. Shmatikov, “‘You might also like:’ Privacy risks of collabo-
rative filtering,” in Proc. IEEE Symp. Secur. Privacy, May 2011,
pp. 231–246.

[24] K. Thomas et al., “Ad injection at scale: Assessing deceptive advertise-
ment modifications,” in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 151–167.

[25] D. Kravets. (2014). Comcast Wi-Fi Serving Self-Promotional Ads Via
JavaScript Injection. [Online]. Available: http://arstechnica.com/tech-
policy/2014/09/why-comcasts-javascript-ad-injections/threaten-security-
net-neutrality/

[26] D. Coldewey. (2014). Marriott Puts an End to Shady Ad Injection
Service. [Online]. Available: http://techcrunch.com/2012/04/09/marriott-
puts-an-end-to-shady-ad-injection-service/

[27] T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C. Price, “Browser-
based attacks on Tor,” in Proc. Int. Workshop Privacy Enhancing
Technol. Springer, 2007, pp. 184–199.

[28] Youtube. [Online]. Available: https://www.youtube.com/
[29] Yelp. [Online]. Available: https://www.yelp.com/
[30] Taobao. [Online]. Available: https://www.taobao.com/
[31] 360 App Market. [Online]. Available: http://zhushou.360.cn/
[32] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”

J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.
[33] F. Chollet et al. (2015). Keras. [Online]. Available: https://github.com/

fchollet/keras
[34] H. Welte. (2015). Libnetfilter_Queue Project. [Online]. Available:

https://www.netfilter.org/projects/libnetfilter_queue/index.html
[35] G. Tsirantonakis, P. Ilia, S. Ioannidis, E. Athanasopoulos, and

M. Polychronakis, “A large-scale analysis of content modification by
open HTTP proxies,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018,
pp. 1–15.

[36] D. Perino, M. Varvello, and C. Soriente, “ProxyTorrent: Untangling the
free HTTP (S) proxy ecosystem,” in Proc. Conf. World Wide Web, 2018,
pp. 197–206.

[37] A. Mani, T. Vaidya, D. Dworken, and M. Sherr, “An extensive evaluation
of the Internet’s open proxies,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., 2018, pp. 252–265.

[38] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS adoption on the Web,” in Proc. 26th USENIX Secur.
Symp., 2017, pp. 1323–1338

[39] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-
site request forgery,” in Proc. 15th ACM Conf. Comput. Commun. Secur.,
2008, pp. 75–88.

[40] W. Meng, X. Xing, A. Sheth, U. Weinsberg, and W. Lee, “Your
online interests: Pwned! A pollution attack against targeted advertising,”
in Proc. 2014 ACM SIGSAC Conf. Comput. Commun. Secur., 2014,
pp. 129–140.

Yubao Zhang received the bachelor’s and master’s
degrees from the National University of Defense
Technology, China. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Computer Engineering, University of Delaware. His
research interests lie in online social networking and
web security.

3818 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Jidong Xiao received the Ph.D. degree in computer
science from the College of William and Mary,
Williamsburg, VA, USA, in 2016. He is currently
an Assistant Professor with Boise State University,
Boise, ID, USA. His research focuses on cybersecu-
rity, with a particular emphasis on operating system
security and cloud security.

Shuai Hao received the Ph.D. degree in computer
science from the College of William and Mary,
Williamsburg, VA, USA, in 2017. He worked as
a Post-Doctoral Researcher with CAIDA, UC San
Diego. He is currently an Assistant Professor with
the Department of Computer Science, Old Dominion
University (ODU), Norfolk, VA. His research inter-
ests lie in the measurement and security of internet
infrastructure and networking systems.

Haining Wang received the Ph.D. degree in com-
puter science and engineering from the University
of Michigan at Ann Arbor in 2003. He was a
Professor of ECE with the University of Delaware.
He is currently a Professor with the Department
of Electrical and Computer Engineering, Virginia
Tech. His research interests lie in the areas of
security, networking systems, cloud computing, and
Internet-of-Things (IoT) systems.

Sencun Zhu received the B.S. degree in preci-
sion instruments from Tsinghua University, Beijing,
China, in 1996, the M.S. degree in signal processing
from the Graduate School, University of Science
and Technology of China, Beijing, in 1999, and the
Ph.D. degree in information technology from George
Mason University, Fairfax, VA, USA, in 2004. He is
currently an Associate Professor with Penn State
University. His research interests include wireless
and mobile security, network and systems security,
and software security. Among many academic ser-

vices, he is also the Editor-in-Chief of EAI Transactions on Security and
Safety and an Associate Editor of the IEEE TRANSACTIONS ON MOBILE

COMPUTING (TMC).

Sushil Jajodia is currently a University Professor,
a BDM International Professor and the Director of
Center for Secure Information Systems with George
Mason University. Prior to joining Mason, he held
permanent positions at NSF, NRL, and University
of Missouri-Columbia. He has sustained a highly
active research agenda spanning database and cyber
security for over 30 years. He has authored or
coauthored 7 books, edited 52 books and conference
proceedings, and published more than 500 technical
articles in refereed journals and conference proceed-

ings. He holds 23 U.S. patents, and has received a number of prestigious
awards in recognition of his research accomplishments. According to the
Google Scholar, he has over 42 ,000 citations and his H-index is 105.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

